
Python Programming Biyani’s Think Tank 
 

Python Programming 
(BCA Semester V) 

Smriti Verma 
Asst. Professor 

Deptt. of Information Technology 

Biyani's Think Tank 

Concept based notes 



Python Programming Biyani’s Think Tank 
 

While every effort is taken to avoid errors or omissions in this Publication, any mistake or omission 
that may have crept in is not intentional. It may be taken note of that neither the publisher nor 
the author will be responsible for any damage or loss of any kind arising to anyone in any manner 
on account of such errors and omissions. 

Concept & Copyright : 

Biyani Shikshan Samiti 
Sector-3, Vidhyadhar Nagar, 
Jaipur-302 023 (Rajasthan) 
Ph : 0141-2338371, 2338591-95  Fax : 0141-2338007 
E-mail : acad@biyanicolleges.org 

Website :www.gurukpo.com; www.biyanicolleges.org 

First Edition: 2025 

Leaser Type Setted by : 

Published by : 

Think Tanks 

Biyani Group of Colleges 

 

Biyani College Printing Department 



Python Programming Biyani’s Think Tank 
 

Preface 
 
I am glad to present this book, especially designed to serve the needs of the students. 

The book has been written keeping in mind the general weakness in understanding the 

fundamental concepts of the topics. The book is self-explanatory and adopts the “Teach 

Yourself” style. It is based on question-answer pattern. The language of book is quite easy 

and understandable based on scientific approach. 

Any further improvement in the contents of the book by making corrections, omission and 

inclusion is keen to be achieved based on suggestions from the readers for which the 

author shall be obliged. 

I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr. Sanjay Biyani, 

Director (Acad.) Biyani Group of Colleges, who are the backbones and main concept 

provider and also have been constant source of motivation throughout this Endeavour. 

They played an active role in coordinating the various stages of this Endeavour and 

spearheaded the publishing work. 

I look forward to receiving valuable suggestions from professors of various educational 

institutions, other faculty members and students for improvement of the quality of the 

book. The reader may feel free to send in their comments and suggestions to the under 

mentioned address. 

Author 



Python Programming Biyani’s Think Tank 
 

Syllabus 
BCA Semester V 

Python Programming 

Unit – I: Python Concepts: Origin, Comparison, Comments, Variables and Assignment, Identifiers, 

Basic Style Guidelines, Standard Types, Internal Types, Operators, Built-in Functions, Numbers and 

Strings. Sequences: Strings, Sequences, String-Operators & functions, Special Features of Strings, 

Memory Management, programs & examples. 

Conditionals and Loops: if statement, else Statement, elif Statement, while Statement, for 

Statement, break Statement, continue Statement, pass Statement, else Statement 

 
Unit – II: Object and Classes: Classes in Python, Principles of Object Orientation, Creating Classes, 

Instance Methods, Class variables, Inheritance, Polymorphism, Type Identification, Python 

libraries(Strings, Data structures & algorithms). 

Lists and Sets: Built-in Functions, List type built in Methods, Tuples, Tuple Operators, Special 

Features of Tuples, Set: Introduction, Accessing, Built-in Methods (Add, Update, Clear, Copy, Discard, 

Remove), Operations (Union, Intersection, Difference). 

 
Unit-III: Dictionaries : Introduction to Dictionaries, Built-in Functions, Built-in Methods, Dictionary 

Keys, Sorting and Looping, Nested Dictionaries. 

Files: File Objects, File Built-in Function, File Built-in Methods, File Built-in Attributes, Standard Files, 

Command-line Arguments, File System, File Execution, Persistent Storage Modules. 

Regular Expression: Regular Expression: Introduction/Motivation, Special Symbols and Characters 

for REs, REs and Python. 

 
Unit – IV: Excetiptons: Concepts of Exceptions, Exceptions in Python, Detecting and Handling 

Exceptions, Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions. 

Database Interaction : SQL Database Connection using Python, Creating and Searching Tables, 

Reading and storing config information on database, Programming using database connections, 

Python Multithreading: Understanding threads, Forking threads, synchronizing the threads, 

Programming using multithreading. 



Python Programming Biyani’s Think Tank 
 

Table of Contents 
Unit I: Python Concepts 

1.1 Origin of Python 

1.2 Comparison with Other Languages 

1.3 Comments in Python 

1.4 Variables and Assignment 

1.5 Identifiers and Naming Conventions 

1.6 Basic Style Guidelines 

1.7 Standard Data Types 

1.8 Internal Types 

1.9 Operators in Python 

1.10 Built-in Functions 

1.11 Numbers and Strings 

 

Sequences 

1.12 Introduction to Sequences 

1.13 Strings and Their Operations 

1.14 Sequence Operations 

1.15 String Operators and Functions 

1.16 Special Features of Strings 

1.17 Memory Management in Strings 

1.18 Programming Examples 

 

Conditionals and Loops 

1.19 The if Statement 

1.20 The else Statement 

1.21 The elif Statement 

1.22 The while Loop 

1.23 The for Loop 

1.24 break, continue, and pass Statements 

1.25 else with Loop 

 

Unit II: Objects and Classes 

2.1 Introduction to Classes in Python 

2.2 Principles of Object Orientation 

2.3 Creating Classes 

2.4 Instance Methods 

2.5 Class Variables 

2.6 Inheritance and Polymorphism 

2.7 Type Identification 

2.8 Python Libraries (Strings, Data Structures & Algorithms) 



Python Programming Biyani’s Think Tank 
 

Lists and Sets 

2.9 Built-in Functions for Lists 

2.10 List Type Built-in Methods 

2.11 Tuples and Their Features 

2.12 Tuple Operators 

2.13 Set: Introduction and Accessing Elements 

2.14 Set Methods (Add, Update, Clear, Copy, Discard, Remove) 

2.15 Set Operations (Union, Intersection, Difference) 

 

Unit III: Dictionaries, Files, and Regular Expressions 
Dictionaries 

3.1 Introduction to Dictionaries 

3.2 Built-in Functions for Dictionaries 

3.3 Dictionary Methods 

3.4 Dictionary Keys and Access 

3.5 Sorting and Looping in Dictionaries 

3.6 Nested Dictionaries 

 

Files 

3.7 File Objects and File Modes 

3.8 File Built-in Functions 

3.9 File Methods and Attributes 

3.10 Standard Files 

3.11 Command-line Arguments 

3.12 File System and Execution 

3.13 Persistent Storage Modules 

 

Regular Expressions 

3.14 Introduction and Motivation 

3.15 Special Symbols and Characters in REs 

3.16 Using Regular Expressions in Python 

 

 

 

Unit IV: Exceptions, Database Interaction, and Multithreading 
Exceptions 

4.1 Concept of Exceptions 

4.2 Handling Exceptions in Python 

4.3 Exception Objects and Strings 

4.4 Raising Exceptions 



Python Programming Biyani’s Think Tank 
 

4.5 Assertions 

4.6 Standard Exceptions 

 

Database Interaction 

4.7 SQL Database Connection using Python 

4.8 Creating and Searching Tables 

4.9 Reading & Storing Configuration Info 

4.10 Programming with Database Connections 

 

Multithreading 

4.11 Understanding Threads in Python 

4.12 Forking Threads 

4.13 Synchronizing Threads 

4.14 Programming Using Multithreading 

Recommended Exercise 

Sample Paper (Internal) 



Python Programming Biyani’s Think Tank 
 

Chapter 1 

Introduction To Python 
 

1.1 Origin of Python 

Q: What is the origin of Python, and how did it evolve? 

 

A: 

Python is a high-level, interpreted programming language that was created by Guido van 

Rossum and first released in 1991. The language was designed with an emphasis on code 

readability, allowing programmers to express concepts in fewer lines of code compared to other 

programming languages like C and Java. 

 

Python’s design philosophy stresses the importance of simplicity and flexibility. Van Rossum was 

influenced by languages like ABC, Modula-3, and C, but Python's key feature became its 

emphasis on being easy to learn and use, making it an ideal language for both beginners and 

experienced developers. Python has grown in popularity due to its versatility, being used in fields 

such as web development, data science, automation, and artificial intelligence. 

 

 

1.2 Comparison with Other Languages 

Q: How does Python compare with other programming languages, such as Java, C++, and 

JavaScript? 

 

A: 

Python is often compared to languages like Java, C++, and JavaScript, and each of these 

languages has its strengths and weaknesses. Below is a comparative overview: 

 

 Python vs. Java: 

o Python is interpreted, while Java is compiled into bytecode. This makes Python 

more flexible and easier to run across different systems without compilation, but 
Java's bytecode can lead to more optimized performance in large applications. 

o Python’s syntax is much more concise and easier to read, while Java is more 

verbose and requires the definition of a class and a main() method for execution. 

o Python is generally slower than Java due to its dynamic typing and interpreted 
nature, but it is better suited for rapid prototyping and ease of use. 

 Python vs. C++: 

o C++ is a low-level language with manual memory management, while Python 

abstracts away memory management using its built-in garbage collector, making 
Python easier to work with. 

o Python has dynamic typing, whereas C++ uses static typing, making Python more 
flexible but at the cost of some performance. 



Python Programming Biyani’s Think Tank 
 

o C++ is preferred in performance-critical applications, such as game development 
or systems programming, while Python is used in a wide variety of applications, 

from data science to web development. 

 Python vs. JavaScript: 
o JavaScript is primarily used for client-side web development, while Python is used 

for server-side development (though frameworks like Node.js have made 

JavaScript more widely used server-side). 
o JavaScript is more focused on handling asynchronous programming with event- 

driven architecture, whereas Python’s emphasis is on simplicity and readability. 

o Python’s ecosystem for data analysis and machine learning (e.g., Pandas, NumPy, 
TensorFlow) is stronger than JavaScript’s. 

 

 

1.3 Comments in Python 

Q: How are comments used in Python, and why are they important? 

 

A: 

Comments in Python are used to provide explanations or annotations within the code that are not 

executed by the Python interpreter. Comments improve code readability and help developers 

understand the purpose and function of code, especially when the codebase becomes large or when 

multiple developers are involved. 

 

In Python, there are two types of comments: 

 

 Single-line comments: They begin with a hash symbol (#) and are used for brief 

explanations or notes. 
 # This is a single-line comment 

 x = 5 # Assign 5 to x 

 Multi-line comments: Python does not have a dedicated syntax for multi-line comments, 

but you can use a multi-line string (triple quotes) as a comment. 
 ''' 

 This is a multi-line comment 

 that spans more than one line. 

 ''' 

 

Comments are critical for documentation and ensuring that others (or even yourself in the future) 

can understand and maintain the code. Python also provides docstrings, which are multi-line 

comments used to document functions, classes, and modules. 

 

 

1.4 Variables and Assignment 

Q: What are variables in Python, and how does assignment work in Python? 



Python Programming Biyani’s Think Tank 
 

A: 

A variable in Python is a symbolic name that refers to a value. Variables are used to store data 

that can be accessed and manipulated throughout the program. Python is a dynamically typed 

language, meaning you do not need to declare the data type of a variable before using it. 

 

Assignment in Python is done using the = operator. When you assign a value to a variable, Python 

automatically determines the data type based on the value assigned. 

 

Example: 

 
x = 10 # Integer 

y = "Hello" # String 

z = 3.14 # Float 

 

Variables in Python are not bound to a specific type, so you can reassign a variable to a different 

type: 

 
x = 10 # Integer 

x = "Now I am a string" # Reassigned to a string 

 

1.5 Identifiers and Naming Conventions 

Q: What are identifiers in Python, and what are the rules for naming them? 

 

A: 

An identifier in Python is a name used to identify variables, functions, classes, modules, or other 

objects. Python has several rules and conventions for naming identifiers: 

 

 An identifier must begin with a letter (a-z, A-Z) or an underscore (_). 

 The rest of the identifier can consist of letters, digits (0-9), and underscores. 

 Identifiers cannot be keywords (reserved words in Python like if, else, for, etc.). 

 Python is case-sensitive, meaning variable, Variable, and VARIABLE are all different 

identifiers. 

 

Some naming conventions are also recommended for readability: 

 

 Lowercase for variables and functions: my_variable, calculate_area() 

 CamelCase for class names: MyClass, EmployeeDetails 

 Use underscores to separate words in identifiers (snake_case). 

 

1.6 Basic Style Guidelines 

Q: What are the basic style guidelines for writing Python code? 



Python Programming Biyani’s Think Tank 
 

A: 

Python follows the PEP 8 style guide, which provides conventions for writing clean, readable, and 

consistent Python code. Some key guidelines include: 

 

 Indentation: Use 4 spaces per indentation level. Avoid using tabs. 

 Line length: Limit all lines to a maximum of 79 characters to ensure that code is readable 

in various editors and on different screens. 

 Blank lines: Use blank lines to separate functions, classes, and blocks of code within a 

function. Two blank lines should be used to separate top-level functions and classes. 

 Naming conventions: Follow standard conventions like using snake_case for functions 

and variables, and CamelCase for classes. 

 Imports: Imports should be on separate lines and appear at the top of the file, with standard 

library imports first, followed by third-party imports, and then application-specific imports. 

 Comments: Include docstrings for all public modules, functions, classes, and methods. 

Use inline comments sparingly and only when necessary. 

 

 

1.7 Standard Data Types 

Q: What are the standard data types in Python? 

 

A: 

Python has several built-in data types that are essential for storing and manipulating data: 

 

1. Numeric types: 

o int: Integer values (e.g., 42) 

o float: Floating-point numbers (e.g., 3.14) 

o complex: Complex numbers (e.g., 3 + 4j) 
2. Text Type: 

o str: Strings, which are sequences of characters (e.g., "Hello, world!") 

3. Sequence Types: 

o list: An ordered, mutable collection (e.g., [1, 2, 3]) 

o tuple: An ordered, immutable collection (e.g., (1, 2, 3)) 

o range: An immutable sequence of numbers, often used in loops (e.g., range(10)) 

4. Mapping Type: 

o dict: A collection of key-value pairs (e.g., {"name": "Alice", "age": 30}) 

5. Set Types: 

o set: An unordered collection of unique elements (e.g., {1, 2, 3}) 

o frozenset: An immutable set 
6. Boolean Type: 

o bool: Represents truth values, either True or False 

7. Binary Types: 

o bytes: Immutable sequences of bytes (e.g., b"hello") 

o bytearray: Mutable sequences of bytes 

o memoryview: A view object that exposes an array’s buffer interface 



Python Programming Biyani’s Think Tank 
 

 
 

1.8 Internal Types 

Q: What are internal types in Python, and how do they work? 

 

A: 

Internal types refer to the built-in data types in Python that are implemented under the hood. 

These types include lists, tuples, strings, dictionaries, and others. Python's internal memory 

model allows dynamic allocation and garbage collection for objects. This is why Python is 

considered a high-level language, abstracting away memory management details like pointers and 

manual allocation that low-level languages like C or C++ require. 

 

Internally, these types are implemented as C objects in CPython (the standard Python 

implementation). Understanding how these internal types work can be important when working 

with large datasets or optimizing performance. 

 

 

1.9 Operators in Python 

Q: What are the different types of operators in Python? 

 

A: 

Python supports a wide range of operators that allow you to perform different operations on 

variables and values. These include: 

 

1. Arithmetic Operators: For performing basic mathematical operations: 

o +, -, *, /, //, %, ** 

2. Comparison Operators: Used to compare values: 

o ==, !=, >, <, >=, <= 

3. Logical Operators: Used to perform logical operations: 

o and, or, not 

4. Assignment Operators: Used to assign values to variables: 

o =, +=, -=, *=, /=, etc. 

5. Bitwise Operators: For working with binary representations of integers: 

o &, |, ^, <<, >>, ~ 

6. Membership Operators: Used to check if a value is present in a sequence: 

o in, not in 

7. Identity Operators: Used to check if two variables point to the same object: 

o is, is not 

 

1.10 Built-in Functions 

Q: What are some common built-in functions in Python? 



Python Programming Biyani’s Think Tank 
 

A: 

Python provides a wide array of built-in functions that can be used without importing any 

modules. Some of the most commonly used ones include: 

 

 print(): Outputs data to the console. 

 len(): Returns the length of an object (e.g., list, string). 

 type(): Returns the type of an object. 

 int(), float(), str(): Type conversion functions. 

 range(): Generates a sequence of numbers. 

 sum(): Returns the sum of an iterable. 

 max(), min(): Returns the maximum or minimum value from an iterable. 

 

These functions are essential in Python and help simplify many programming tasks. 

 

 

1.11 Numbers and Strings 

Q: How does Python handle numbers and strings, and what operations can you perform on 

them? 

 

A: 

In Python: 

 

 Numbers: Python supports different numeric types: int (for whole numbers), float (for 

floating-point numbers), and complex (for complex numbers). Operations like addition, 

subtraction, multiplication, and division can be performed using arithmetic operators. 

Python also allows implicit type conversion, for example, adding an integer and a float will 

result in a float. 

 Strings: Strings in Python are sequences of characters enclosed in single (') or double (") 

quotes. Python supports string concatenation, slicing, and various string methods like 

upper(), lower(), replace(), and split(). Strings are immutable, meaning once 

created, their contents cannot be changed. 

 

Example: 

 
# Numbers 

a = 10 

b = 5.5 

sum_result = a + b # Result is a float 

 

# Strings 

greeting = "Hello" 

name = "Alice" 

message = greeting + ", " + name # Concatenation 
 



Python Programming Biyani’s Think Tank 
 

1.12 Introduction to Sequences 

Q: What are sequences in Python, and what types of sequences exist? 

 

A: 

In Python, a sequence is an ordered collection of elements. Sequences allow you to store and 

manage multiple elements in a structured way. Python provides several types of sequences, each 

with unique characteristics and functionalities. Sequences support operations like indexing, 

slicing, and iteration. 

 

The main sequence types in Python are: 

 

 Lists: A mutable sequence that can store elements of different types. Lists are defined using 

square brackets []. 
 my_list = [1, 2, 3, 'a', 'b'] 

 Tuples: An immutable sequence used to store ordered collections of elements. Tuples are 

defined using parentheses (). 
 my_tuple = (1, 2, 3, 'a', 'b') 

 Strings: A sequence of characters. Strings are immutable in Python and are defined using 

single (') or double (") quotes. 
 my_string = "Hello" 

 Ranges: A sequence of numbers commonly used for iteration in for loops. Ranges are 

immutable and created using the range() function. 
 my_range = range(1, 5) # Generates numbers 1 to 4 

 

Sequences are an essential concept in Python because they provide an easy way to store, 

manipulate, and iterate over ordered data. 

 

 

1.13 Strings and Their Operations 

Q: How are strings treated as sequences in Python, and what operations can be performed on 

strings? 

 

A: 

In Python, strings are sequences of characters that are immutable, meaning that once a string is 

created, its contents cannot be changed. However, strings can be manipulated or transformed using 

a variety of operations. 

 

Some of the basic string operations include: 

 

1. Indexing: You can access individual characters in a string using indexing, where indexing 

starts at 0. 
2. my_string = "Hello" 
3. print(my_string[0]) # Output: H 

4. Slicing: Slicing allows you to access a substring from a string. 
5. print(my_string[1:4]) # Output: ell 



Python Programming Biyani’s Think Tank 
 

6. Concatenation: You can join two or more strings together using the + operator. 
7. greeting = "Hello" 
8. name = "Alice" 
9. message = greeting + " " + name # Output: "Hello Alice" 

10. Repetition: The * operator can be used to repeat a string multiple times. 
11. print("abc" * 3) # Output: abcabcabc 

12. Length: The len() function returns the length of the string. 
13. print(len(my_string)) # Output: 5 

14. Iteration: Strings can be iterated over using loops like for. 
15. for char in my_string: 

16. print(char) 

 

Strings in Python also support methods like lower(), upper(), replace(), split(), and 

strip() for text manipulation. 

 

 

1.14 Sequence Operations 

Q: What are common operations performed on sequences (lists, tuples, etc.) in Python? 

 

A: 

Sequences in Python (lists, tuples, strings) support a wide variety of operations that make it easy 

to manipulate, traverse, and modify their contents. Some common operations include: 

 

1. Indexing: As mentioned earlier, elements in a sequence can be accessed using their index. 
2. my_list = [10, 20, 30] 
3. print(my_list[1]) # Output: 20 

4. Slicing: You can extract a portion of the sequence using slicing, defined as 

sequence[start:end]. This operation does not modify the original sequence but instead 

returns a new sequence. 
5. my_list = [10, 20, 30, 40, 50] 
6. print(my_list[1:4]) # Output: [20, 30, 40] 

7. Concatenation: Sequences can be combined using the + operator to create a new sequence. 
8. list1 = [1, 2, 3] 
9. list2 = [4, 5, 6] 
10. result = list1 + list2 # Output: [1, 2, 3, 4, 5, 6] 

11. Repetition: Sequences can be repeated using the * operator. 
12. my_list = [1, 2] 

13. print(my_list * 3) # Output: [1, 2, 1, 2, 1, 2] 

14. Membership: You can check if an element exists in a sequence using the in keyword. 
15. my_list = [1, 2, 3] 

16. print(2 in my_list) # Output: True 

17. Iteration: You can iterate through a sequence using loops. 
18. for item in my_list: 

19. print(item) 

20. Length: Use len() to get the number of elements in a sequence. 
21. print(len(my_list)) # Output: 3 

 

These operations help make Python sequences highly flexible and useful for a wide range of 

applications. 



Python Programming Biyani’s Think Tank 
 

 
 

1.15 String Operators and Functions 

Q: What are some key operators and functions that can be used with strings in Python? 

 

A: 

Strings in Python come with several built-in operators and functions that allow for efficient text 

manipulation. These include: 

 

1. Operators: 

o Concatenation (+): Combines two strings into one. 
o result = "Hello" + " " + "World" # Output: "Hello World" 

o Repetition (*): Repeats a string multiple times. 
o result = "Python" * 3 # Output: "PythonPythonPython" 

2. Built-in Functions: 

o len(): Returns the length of a string. 
o print(len("Hello")) # Output: 5 

o str(): Converts other data types into a string. 
o print(str(123)) # Output: "123" 

o ord(): Converts a character into its corresponding ASCII value. 
o print(ord('A')) # Output: 65 

o chr(): Converts an ASCII value into its corresponding character. 
o print(chr(65)) # Output: "A" 

3. String Methods: 

o lower(): Converts all characters to lowercase. 
o print("Hello".lower()) # Output: "hello" 

o upper(): Converts all characters to uppercase. 
o print("Hello".upper()) # Output: "HELLO" 

o replace(): Replaces a substring with another substring. 
o print("Hello World".replace("World", "Python")) # Output: "Hello 

Python" 

o strip(): Removes leading and trailing whitespace from the string. 
o print(" Hello ".strip()) # Output: "Hello" 

 

1.16 Special Features of Strings 

Q: What are some special features or functionalities that Python strings support? 

 

A: 

Python provides several special features that make strings highly versatile and easy to work with. 

Some key features include: 

 

1. Immutability: Strings in Python are immutable, meaning once a string is created, it cannot 

be modified. Any operation that modifies a string creates a new string. 
2. my_string = "Hello" 
3. new_string = my_string.replace("H", "J") # Creates a new string, "Jello" 

4. String Formatting: Python provides multiple ways to format strings, including: 

o f-strings (Python 3.6+): Directly embed expressions inside strings. 



Python Programming Biyani’s Think Tank 
 

o name = "Alice" 

o greeting = f"Hello, {name}" # Output: "Hello, Alice" 

o format() method: Format strings by inserting values into placeholders. 
o "Hello, {}".format("Alice") # Output: "Hello, Alice" 

5. Escape Sequences: Python supports special escape sequences in strings: 

o \n for newline 

o \t for tab 

o \\ for a backslash 
6. print("Hello\nWorld") # Output: "Hello" (new line) "World" 

7. Multiline Strings: You can create multiline strings using triple quotes (''' or """). 
8. multiline_string = """This is 
9. a multiline string.""" 

 

1.17 Memory Management in Strings 

Q: How is memory managed in Python when dealing with strings? 

 

A: 

In Python, memory management for strings is handled automatically by the Python interpreter 

through its garbage collector. Strings are immutable, so when a string is modified, a new string 

is created, and the old string may eventually be garbage-collected. 

 

Python also uses string interning, which helps save memory by storing only one copy of identical 

strings. For example: 

 
a = "Hello" 

b = "Hello" 

print(a is b) # Output: True 

 

In this case, both a and b refer to the same memory location, as Python internally reuses the string 

"Hello". 

 

 

1.18 Programming Examples 

Q: Provide a programming example demonstrating the use of strings and sequences in Python. 

 

A: 

Here is an example that demonstrates string operations, slicing, and sequence manipulation: 

 
# String Operations 

name = "Python" 

greeting = "Hello, " + name # Concatenation 

print(greeting) # Output: Hello, Python 

# String Slicing 

substring = name[1:4] 

print(substring) # Output: yth 



Python Programming Biyani’s Think Tank 
 

# List as a sequence 

numbers = [1, 2, 3, 4, 5] 

numbers.append(6) # Adding an element to the list 

print(numbers) # Output: [1, 2, 3, 4, 5, 6] 

# Looping through a string 

for char in name: 

print(char, end=" ") # Output: P y t h o n 

 

This example demonstrates how to perform string concatenation, slicing, and list manipulation. 

Python's support for sequences like lists and strings makes it a powerful and flexible language for 

a wide range of applications. 

 

 

 

1.19 The if Statement 

Q: What is the purpose of the if statement in Python, and how is it used? 

 

A: 

The if statement is one of the core conditional control structures in Python. It allows you to make 

decisions in your code by executing a block of code only when a specific condition is true. 

 

Syntax: 
if condition: 

# Code to execute if condition is True 

 

 The condition is an expression that evaluates to either True or False. 

 If the condition is True, the block of code indented beneath the if statement is executed. 

 If the condition is False, the program moves to the next control structure or statement. 

 

Example: 
age = 18 

if age >= 18: 

print("You are an adult.") 

 

Output: 

 
You are an adult. 

 

In the above example, the condition age >= 18 evaluates to True, so the code inside the if block 

gets executed. 

 

1.20 The else Statement 

Q: How does the else statement work in conjunction with the if statement in Python? 



Python Programming Biyani’s Think Tank 
 

A: 

The else statement is used to define a block of code that is executed when the condition in the 

corresponding if statement is false. It is always used after an if or elif block. While if handles 

the case when the condition is True, else handles the case when the condition is False. 

 

Syntax: 
if condition: 

# Code to execute if condition is True 

else: 

# Code to execute if condition is False 

Example: 
age = 16 

if age >= 18: 

print("You are an adult.") 

else: 

print("You are a minor.") 

 

Output: 

 
You are a minor. 

 

Here, since age >= 18 is False, the code inside the else block executes. 

 

 

1.21 The elif Statement 

Q: What is the role of the elif statement in Python? How does it differ from else? 

 

A: 

The elif (short for "else if") statement provides additional conditions to check, allowing for more 

than two possibilities. It follows an if statement and allows you to check multiple conditions 

sequentially. If the first condition (if) is False, the program checks the condition in the elif 

statement, and so on. 

 

You can have multiple elif statements in a chain, but only the first block with a True condition 

will be executed. If none of the conditions are True, the else block will execute (if provided). 

 

Syntax: 
if condition1: 

# Code for condition1 

elif condition2: 

# Code for condition2 

elif condition3: 

# Code for condition3 

else: 

# Code if no condition is True 

Example: 
age = 20 

if age < 18: 



Python Programming Biyani’s Think Tank 
 

print("You are a minor.") 

elif age >= 18 and age < 65: 

print("You are an adult.") 

else: 

print("You are a senior.") 

 

Output: 

 
You are an adult. 

 

Here, the first condition age < 18 is False, so the program checks the elif condition age >= 18 

and age < 65, which is True. Therefore, the code inside the elif block is executed. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

1.22 The while Loop 

Q: What is the while loop, and when should it be used in Python? 

 

A: 

The while loop is used to execute a block of code repeatedly as long as a given condition remains 

true. The condition is checked before each iteration, and if it evaluates to True, the loop continues 



Python Programming Biyani’s Think Tank 
 

to execute. If the condition evaluates to False, the loop terminates, and the program continues 

with the next statement after the loop. 

 

The while loop is useful when the number of iterations is not known in advance and depends on 

the outcome of a condition. 

 

Syntax: 
while condition: 

# Code to execute as long as condition is True 

Example: 
count = 1 

while count <= 5: 

print(count) 

count += 1 

 

Output: 

 
1 

2 

3 

4 

5 

 

In this example, the loop continues to execute as long as count <= 5. After each iteration, count 

is incremented by 1. Once count becomes 6, the condition count <= 5 becomes False, and the 

loop stops. 

 

 

1.23 The for Loop 

Q: What is the for loop in Python, and how does it differ from the while loop? 

 

A: 

The for loop is used to iterate over a sequence (like a list, tuple, string, or range) and execute a 

block of code for each item in the sequence. Unlike the while loop, which depends on a condition 

to terminate, the for loop automatically terminates when it has iterated over all items in the 

sequence. 

 

The for loop is typically used when the number of iterations is known or when you are iterating 

over a collection of data. 

 

Syntax: 
for item in sequence: 

# Code to execute for each item in sequence 

Example: 
fruits = ["apple", "banana", "cherry"] 

for fruit in fruits: 

print(fruit) 



Python Programming Biyani’s Think Tank 
 

Output: 

 
apple 

banana 

cherry 

 

Here, the for loop iterates over each item in the list fruits, and the code inside the loop is 

executed for each item. 

 
 

 

1.24 break, continue, and pass Statements 

Q: What are the functions of the break, continue, and pass statements in Python loops? 



Python Programming Biyani’s Think Tank 
 

A: 

These three statements are used to control the flow of execution inside loops: 

 

1. break: The break statement is used to exit a loop early, regardless of whether the loop's 

condition is True. It is typically used when you want to terminate the loop based on a 

specific condition. 
2. for i in range(10): 
3. if i == 5: 

4. break # Exit the loop when i equals 5 

5. print(i) 

6. continue: The continue statement is used to skip the current iteration of the loop and 

proceed with the next iteration. The rest of the code in the loop after the continue 

statement is skipped for the current iteration. 
7. for i in range(10): 
8. if i == 5: 

9. continue # Skip the iteration when i equals 5 

10. print(i) 

11. pass: The pass statement is a placeholder that does nothing. It is used when a statement 

is syntactically required but no action is needed. It is often used as a placeholder for future 

code or within empty loops or functions. 
12. for i in range(10): 

13. if i == 5: 

14. pass # Do nothing when i equals 5 

15. else: 

16. print(i) 

 

1.25 else with Loop 

Q: How is the else statement used with loops in Python? 

 

A: 

In Python, an else block can be used in conjunction with both for and while loops. The else 

block is executed when the loop has completed all iterations normally (i.e., the loop did not 

terminate via a break statement). 

 

 The else block is not executed if the loop is prematurely terminated by a break statement. 

 It is executed when the loop finishes all iterations successfully. 

 

Syntax: 
for item in sequence: 

# Code to execute for each item 

else: 

# Code to execute if the loop completes without a break 

Example: 
for i in range(5): 

print(i) 

else: 

print("Loop completed without a break.") 

 

Output: 



Python Programming Biyani’s Think Tank 
 

0 

1 

2 

3 

4 

Loop completed without a break. 

 

In this case, the loop completes without encountering a break statement, so the else block is 

executed. 

 

If you use a break inside the loop, the else block will be skipped: 

 
for i in range(5): 

if i == 3: 

break 

print(i) 

else: 

print("Loop completed without a break.") 

 

Output: 

 
0 

1 

2 

 

Here, the loop terminates early at i == 3 because of the break, so the else block is skipped. 



Python Programming Biyani’s Think Tank 
 

Chapter 2 

Objects and Classes 
 

2.1 Introduction to Classes in Python 

Q: What are classes in Python, and how do they contribute to object-oriented programming? 

 

A: 

In Python, a class is a blueprint or template for creating objects. A class defines the attributes 

(data) and methods (functions) that the objects created from the class will have. Classes allow us 

to bundle data and functionality together, making it easier to organize and manage code. Classes 

are the cornerstone of Object-Oriented Programming (OOP), which is a programming paradigm 

that revolves around the concept of objects and their interactions. 

 

A class defines a set of properties and behaviors that are shared by all instances (objects) of that 

class. Objects are instances of classes, and each object can have its own specific values for the 

attributes defined in the class. 

 

Example: 
class Dog: 

# Class attribute 

species = "Canis familiaris" 

 

# Instance method 

def  init (self, name, age): 

self.name = name # Instance variable 

self.age = age # Instance variable 

 

def bark(self): 

print(f"{self.name} says Woof!") 

 

# Create an instance of the Dog class 

dog1 = Dog("Buddy", 3) 

dog1.bark() # Output: Buddy says Woof! 

 

In this example, Dog is the class, and dog1 is an object (instance) of that class. 

 

 

2.2 Principles of Object-Oriented Programming (OOP) 

Q: What are the fundamental principles of object-oriented programming, and how do they relate 

to Python? 

 

A: 

Object-Oriented Programming (OOP) is a programming paradigm that uses objects and classes to 



Python Programming Biyani’s Think Tank 
 

organize and structure code. Python, being an object-oriented language, follows the four primary 

principles of OOP: 

 

1. Encapsulation: 

Encapsulation refers to the bundling of data (attributes) and methods (functions) that 

operate on the data within a single unit or class. It helps in hiding the internal workings of 

an object and only exposes a well-defined interface. 

 

In Python, encapsulation can be achieved by defining attributes and methods within a class. 

You can control access to attributes using getter and setter methods or access modifiers 

like private and protected. 

 

2. Abstraction: 

Abstraction involves hiding complex implementation details and only exposing essential 

features. It simplifies interactions with objects by providing a clear and simplified 

interface. 

 

In Python, you can use abstract base classes (ABCs) to enforce abstraction, making sure 

that derived classes implement specific methods. 

 

3. Inheritance: 

Inheritance allows one class (child class) to inherit the attributes and methods from another 

class (parent class). This helps in reusing code and establishing relationships between 

different classes. 

 

Python supports single and multiple inheritance, allowing you to create a new class based 

on an existing class. 

 

4. Polymorphism: 

Polymorphism refers to the ability of different classes to be treated as instances of the same 

class through inheritance. It allows different objects to respond to the same method call in 

different ways. 

 

In Python, polymorphism can be achieved through method overriding, where a child class 

provides its own implementation of a method that is already defined in the parent class. 

 

 

2.3 Creating Classes 

Q: How do you create a class in Python, and what are the key components of a class? 

 

A: 

To create a class in Python, you use the class keyword followed by the class name (which should 

follow the standard naming convention). The class body contains methods (functions) and 

attributes (variables) that define the class. 



Python Programming Biyani’s Think Tank 
 

A class generally has the following key components: 

 

 Class attributes: Variables shared by all instances of the class. 

 Instance attributes: Variables unique to each instance of the class. 

 Methods: Functions that define the behaviors of the objects. 

 

Syntax: 
class ClassName: 

# Constructor method to initialize attributes 

def  init (self, attribute1, attribute2): 

self.attribute1 = attribute1 

self.attribute2 = attribute2 

 

# Class method 

def method1(self): 

pass 

Example: 
class Car: 

def  init (self, brand, model, year): 

self.brand = brand 

self.model = model 

self.year = year 

def display_info(self): 

print(f"{self.year} {self.brand} {self.model}") 

 

car1 = Car("Toyota", "Camry", 2020) 

car1.display_info() # Output: 2020 Toyota Camry 

 

2.4 Instance Methods 

Q: What are instance methods in Python, and how do they differ from class methods? 

 

A: 

Instance methods are functions that are defined inside a class and operate on instances of that 

class. They take at least one argument, usually called self, which refers to the instance of the class 

on which the method is called. These methods can access and modify the attributes of the instance. 

 

In contrast, class methods (defined with the @classmethod decorator) are functions that operate 

on the class itself, rather than on an instance. They take cls as their first parameter instead of self. 

 

Example of an instance method: 
class Dog: 

def  init (self, name): 

self.name = name 

def greet(self): 

print(f"Woof! I am {self.name}.") 

 

dog1 = Dog("Buddy") 

dog1.greet() # Output: Woof! I am Buddy. 



Python Programming Biyani’s Think Tank 
 

Here, greet is an instance method that uses self to access the name attribute of the dog1 object. 

 

2.5 Class Variables 

Q: What are class variables in Python, and how are they different from instance variables? 

 

A: 

Class variables are variables that are shared among all instances of a class. They are defined inside 

the class but outside any methods. Every instance of the class has access to these variables, and 

they are generally used to store properties or data that should be shared across all instances. 

 

Instance variables, on the other hand, are specific to each instance of the class. They are typically 

defined inside the   init constructor and are unique to each object. 

 

Example of class variables: 
class Dog: 

species = "Canis familiaris" # Class variable 

 

def  init (self, name): 

self.name = name # Instance variable 

 

dog1 = Dog("Buddy") 

dog2 = Dog("Lucy") 

print(dog1.species) # Output: Canis familiaris 

print(dog2.species) # Output: Canis familiaris 

 

In this case, species is a class variable shared by all instances of Dog. 

 

 

2.6 Inheritance and Polymorphism 

Q: What is inheritance, and how does polymorphism work in Python? 

 

A: 

Inheritance is a mechanism that allows one class (child class) to inherit attributes and methods 

from another class (parent class). This enables code reuse and the creation of a class hierarchy. 

The child class can override or extend the behavior of the parent class. 

 

Polymorphism allows different classes to have methods with the same name but with different 

behaviors. In Python, polymorphism is often achieved through method overriding, where a 

subclass provides a specific implementation for a method already defined in its parent class. 

 

Example of inheritance and polymorphism: 
class Animal: 

def speak(self): 

raise NotImplementedError("Subclass must implement abstract method") 



Python Programming Biyani’s Think Tank 
 

 

class Dog(Animal): 

def speak(self): 

print("Woof!") 

 

class Cat(Animal): 

def speak(self): 

print("Meow!") 

 

dog = Dog() 

cat = Cat() 

 

dog.speak() # Output: Woof! 

cat.speak() # Output: Meow! 

 

In this example, both Dog and Cat inherit from the Animal class and override the speak method, 

showcasing polymorphism. 

 

 

2.7 Type Identification 

Q: How can you check the type of an object in Python? 

 

A: 

In Python, you can use the type() function to identify the type of an object. This is helpful when 

debugging or ensuring that variables hold the expected type. 

 

Example: 
x = 5 

print(type(x)) # Output: <class 'int'> 

 

y = "Hello" 

print(type(y)) # Output: <class 'str'> 

 

The type() function returns the class type of the object passed to it. 

 

 

2.8 Python Libraries (Strings, Data Structures & Algorithms) 

Q: What are some commonly used Python libraries for working with strings, data structures, and 

algorithms? 

 

A: 

Python offers a wide variety of standard libraries and third-party libraries for working with 

strings, data structures, and algorithms. Here are some of the most popular ones: 

 

1. Strings: 



Python Programming Biyani’s Think Tank 
 

o Python provides built-in methods for string manipulation, such as lower(), 

upper(), split(), and join(). You can also use regular expressions (via the re 

module) for advanced string operations. 

2. Data Structures: 

o collections module: Contains useful data structures like deque, Counter, 

OrderedDict, and defaultdict. 

o heapq module: Provides heap-based priority queues. 

o array module: For arrays, which are more efficient than lists for numerical data. 

3. Algorithms: 
o Python’s standard library includes basic algorithms for sorting, searching, and 

manipulating data. For advanced algorithms, third-party libraries like NumPy (for 

numerical data), pandas (for data analysis), and networkx (for graph-based 

algorithms) are commonly used. 

 

By combining these libraries with Python’s built-in capabilities, you can efficiently implement 

algorithms and handle complex data structures. 

 

 

 

2.9 Built-in Functions for Lists 

Q: What are some of the built-in functions available for working with lists in Python? 

 

A: 

Python provides several built-in functions that are particularly useful for working with lists. Here 

are some key built-in functions: 

 

1. len(): Returns the number of elements in a list. 
2. lst = [1, 2, 3] 
3. print(len(lst)) # Output: 3 

4. min(): Returns the smallest item in the list. 
5. lst = [1, 2, 3] 
6. print(min(lst)) # Output: 1 

7. max(): Returns the largest item in the list. 
8. lst = [1, 2, 3] 
9. print(max(lst)) # Output: 3 

10. sum(): Returns the sum of all items in the list (for numeric lists). 
11. lst = [1, 2, 3] 

12. print(sum(lst)) # Output: 6 

13. sorted(): Returns a sorted version of the list. 
14. lst = [3, 1, 2] 

15. print(sorted(lst)) # Output: [1, 2, 3] 

16. all(): Returns True if all elements in the list evaluate to True. 
17. lst = [True, True, True] 

18. print(all(lst)) # Output: True 

19. any(): Returns True if any element in the list evaluates to True. 
20. lst = [False, False, True] 

21. print(any(lst)) # Output: True 



Python Programming Biyani’s Think Tank 
 

These functions can be used for various list manipulations, making list operations efficient and 

easy to implement. 

 

2.10 List Type Built-in Methods 

Q: What are some of the built-in methods available for lists in Python? 

 

A: 

Python provides several useful methods for manipulating lists. Here are some of the most 

commonly used ones: 

 

1. append(): Adds an item to the end of the list. 
2. lst = [1, 2] 
3. lst.append(3) 
4. print(lst) # Output: [1, 2, 3] 

5. extend(): Adds all items from another iterable (e.g., list, tuple) to the list. 
6. lst = [1, 2] 
7. lst.extend([3, 4]) 
8. print(lst) # Output: [1, 2, 3, 4] 

9. insert(): Adds an element at a specific index in the list. 
10. lst = [1, 3] 

11. lst.insert(1, 2) 

12. print(lst) # Output: [1, 2, 3] 

13. remove(): Removes the first occurrence of an element from the list. 
14. lst = [1, 2, 3] 

15. lst.remove(2) 

16. print(lst) # Output: [1, 3] 

17. pop(): Removes and returns the element at the specified index (default is the last item). 
18. lst = [1, 2, 3] 

19. item = lst.pop(1) 

20. print(item) # Output: 2 

21. print(lst) # Output: [1, 3] 

22. sort(): Sorts the list in ascending order (can specify reverse sorting). 
23. lst = [3, 1, 2] 

24. lst.sort() 

25. print(lst) # Output: [1, 2, 3] 

26. reverse(): Reverses the order of elements in the list. 
27. lst = [1, 2, 3] 

28. lst.reverse() 

29. print(lst) # Output: [3, 2, 1] 

30. count(): Returns the number of occurrences of an element in the list. 
31. lst = [1, 2, 2, 3] 

32. print(lst.count(2)) # Output: 2 

 

These methods help you modify, retrieve, and manipulate lists efficiently in Python. 

 



Python Programming Biyani’s Think Tank 
 

2.11 Tuples and Their Features 

Q: What are tuples in Python, and what are their features? 

 

A: 

A tuple is a collection of ordered, immutable elements. Tuples are similar to lists but differ in that 

they cannot be changed (i.e., they are immutable). Here are some key features of tuples: 

 

1. Ordered: The elements in a tuple have a defined order, and they can be accessed via 

indices, just like lists. 

2. Immutable: Once a tuple is created, its contents cannot be modified (i.e., you cannot 

change, add, or remove elements). 

3. Can contain different data types: A tuple can store a variety of data types, including 

integers, floats, strings, and even other tuples. 

4. Faster than lists: Because tuples are immutable, they are generally faster than lists when 

it comes to iteration and access. 

5. Defined using parentheses: Tuples are defined using parentheses () rather than square 

brackets []. 

 

Example: 
t = (1, 2, 3) 

print(t[1]) # Output: 2 

 

2.12 Tuple Operators 

Q: What operators can be used with tuples in Python? 

 

A: 

Tuples in Python support a variety of operators: 

 

1. Concatenation (+): Tuples can be concatenated together using the + operator. 
2. t1 = (1, 2) 
3. t2 = (3, 4) 
4. t3 = t1 + t2 
5. print(t3) # Output: (1, 2, 3, 4) 

6. Repetition (*): A tuple can be repeated a specified number of times using the * operator. 
7. t = (1, 2) 
8. print(t * 3) # Output: (1, 2, 1, 2, 1, 2) 

9. Membership (in, not in): You can check whether an element exists in a tuple using the 

in and not in operators. 
10. t = (1, 2, 3) 

11. print(2 in t) # Output: True 

12. print(4 not in t) # Output: True 

13. Indexing and Slicing: You can access elements of a tuple using indexing ([]), and you 

can slice tuples using the colon (:). 
14. t = (1, 2, 3, 4) 

15. print(t[1]) # Output: 2 

16. print(t[1:3]) # Output: (2, 3) 



Python Programming Biyani’s Think Tank 
 

 
 

2.13 Set: Introduction and Accessing Elements 

Q: What is a set in Python, and how do you access elements in a set? 

 

A: 

A set is an unordered collection of unique elements. Sets are similar to lists and tuples, but they 

do not allow duplicate values and do not maintain order. Sets are defined using curly braces {}. 

 

Key features of sets: 

 

 Unordered: The elements in a set are not stored in any particular order. 

 No duplicates: Sets automatically remove duplicate elements. 

 Mutable: You can add or remove elements from a set after it has been created. 

 

Example: 
s = {1, 2, 3, 4} 

print(s) # Output: {1, 2, 3, 4} 

 

To access elements, you can use iteration (sets do not support indexing or slicing like lists or 

tuples): 

 
for item in s: 

print(item) 

2.14 Set Methods (Add, Update, Clear, Copy, Discard, Remove) 

Q: What are some common methods used to modify sets in Python? 

A: 

Python provides several methods for modifying sets: 
 

1. add(): Adds an element to the set (if not already present). 
2. s = {1, 2, 3} 
3. s.add(4) 
4. print(s) # Output: {1, 2, 3, 4} 

5. update(): Adds multiple elements to the set. 
6. s = {1, 2, 3} 

7. s.update([4, 5]) 
8. print(s) # Output: {1, 2, 3, 4, 5} 

9. clear(): Removes all elements from the set. 
10. s = {1, 2, 3} 

11. s.clear() 

12. print(s) # Output: set() 

13. copy(): Returns a shallow copy of the set. 
14. s = {1, 2, 3} 

15. new_s = s.copy() 

16. print(new_s) # Output: {1, 2, 3} 



Python Programming Biyani’s Think Tank 
 

17. discard(): Removes an element from the set if it exists. Does nothing if the element is 

not present. 
18. s = {1, 2, 3} 

19. s.discard(2) 

20. print(s) # Output: {1, 3} 

21. remove(): Removes an element from the set. Raises a KeyError if the element is not 

present. 
22. s = {1, 2, 3} 

23. s.remove(2) 

24. print(s) # Output: {1, 3} 

 

2.15 Set Operations (Union, Intersection, Difference) 

Q: What are the common set operations in Python, and how do they work? 

 

A: 

Sets in Python support several common set operations that are useful for mathematical set theory: 

 

1. Union (| or union()): Returns a new set that contains all the elements from both sets. 
2. s1 = {1, 2, 3} 
3. s2 = {3, 4, 5} 
4. print(s1 | s2) # Output: {1, 2, 3, 4, 5} 

5. Intersection (& or intersection()): Returns a new set that contains only the elements 

that are present in both sets. 
6. s1 = {1, 2, 3} 
7. s2 = {3, 4, 5} 
8. print(s1 & s2) # Output: {3} 

9. Difference (- or difference()): Returns a new set that contains elements present in the 

first set but not in the second set. 
10. s1 = {1, 2, 3} 

11. s2 = {3, 4, 5} 

12. print(s1 - s2) # Output: {1, 2} 

13. Symmetric Difference (^ or symmetric_difference()): Returns a new set that contains 

elements in either of the sets, but not in both. 
14. s1 = {1, 2, 3} 

15. s2 = {3, 4, 5} 

16. print(s1 ^ s2) # Output: {1, 2, 4, 5} 

 

These set operations help you easily manipulate and compare sets in Python. 



Python Programming Biyani’s Think Tank 
 

Chapter 3 

Dictionaries, Files, and Regular 

Expressions 
 

3.1 Introduction to Dictionaries 

Q: What is a dictionary in Python, and what are its features? 

 

A: 

A dictionary in Python is an unordered collection of key-value pairs. Each key is unique, and each 

key maps to a value. Dictionaries are highly flexible and can store data of any type (e.g., integers, 

strings, lists, other dictionaries). 

 

Key features of dictionaries: 

 

1. Unordered: Dictionaries do not maintain the order of the elements (though order 

preservation is guaranteed starting from Python 3.7). 

2. Key-value pairs: Each element in a dictionary consists of a key and a corresponding value. 

3. Mutable: You can add, remove, or change items in a dictionary. 

4. Keys are unique: No two keys in a dictionary can be the same. 

5. Keys are immutable: The keys must be of a hashable type, such as strings, numbers, or 

tuples. 

Example: 
my_dict = {'name': 'Alice', 'age': 25} 

print(my_dict) # Output: {'name': 'Alice', 'age': 25} 

 

3.2 Built-in Functions for Dictionaries 

Q: What are some built-in functions for dictionaries in Python? 

 

A: 

Python provides several built-in functions to work with dictionaries: 

 

1. len(): Returns the number of key-value pairs in the dictionary. 
2. my_dict = {'name': 'Alice', 'age': 25} 
3. print(len(my_dict)) # Output: 2 

4. min(): Returns the smallest key in the dictionary based on the lexicographical order. 
5. my_dict = {'name': 'Alice', 'age': 25} 
6. print(min(my_dict)) # Output: 'age' 

7. max(): Returns the largest key in the dictionary based on lexicographical order. 
8. my_dict = {'name': 'Alice', 'age': 25} 
9. print(max(my_dict)) # Output: 'name' 

10. keys(): Returns a view object that displays all the keys in the dictionary. 



Python Programming Biyani’s Think Tank 
 

11. my_dict = {'name': 'Alice', 'age': 25} 

12. print(my_dict.keys()) # Output: dict_keys(['name', 'age']) 

13. values(): Returns a view object that displays all the values in the dictionary. 
14. my_dict = {'name': 'Alice', 'age': 25} 

15. print(my_dict.values()) # Output: dict_values(['Alice', 25]) 

16. items(): Returns a view object that displays a list of tuples, where each tuple is a key- 

value pair. 
17. my_dict = {'name': 'Alice', 'age': 25} 

18.print(my_dict.items()) # Output: dict_items([('name', 'Alice'), 

('age', 25)]) 

 

These functions are essential for accessing and manipulating dictionaries. 

 

 

3.3 Dictionary Methods 

Q: What are some common methods used to manipulate dictionaries in Python? 

 

A: 

Python dictionaries offer several useful methods for adding, removing, and updating key-value 

pairs: 

 

1. get(): Returns the value associated with a key, or None if the key is not found. 
2. my_dict = {'name': 'Alice', 'age': 25} 
3. print(my_dict.get('name')) # Output: Alice 

4. print(my_dict.get('address')) # Output: None 

5. update(): Updates the dictionary with the key-value pairs from another dictionary or 

iterable. 
6. my_dict = {'name': 'Alice'} 
7. my_dict.update({'age': 25}) 
8. print(my_dict) # Output: {'name': 'Alice', 'age': 25} 

9. pop(): Removes and returns the value for a given key. Raises a KeyError if the key is not 

found. 
10. my_dict = {'name': 'Alice', 'age': 25} 

11. value = my_dict.pop('age') 

12. print(value) # Output: 25 

13. print(my_dict) # Output: {'name': 'Alice'} 

14. popitem(): Removes and returns an arbitrary key-value pair as a tuple. 
15. my_dict = {'name': 'Alice', 'age': 25} 

16. item = my_dict.popitem() 

17. print(item) # Output: ('age', 25) (order is arbitrary) 

18. clear(): Removes all the items from the dictionary. 
19. my_dict = {'name': 'Alice', 'age': 25} 

20. my_dict.clear() 

21. print(my_dict) # Output: {} 

22. setdefault(): Returns the value if the key is in the dictionary. If not, inserts the key with 

a default value. 
23. my_dict = {'name': 'Alice'} 

24. print(my_dict.setdefault('age', 25)) # Output: 25 

25. print(my_dict) # Output: {'name': 'Alice', 'age': 25} 



Python Programming Biyani’s Think Tank 
 

These methods provide powerful ways to interact with dictionaries in Python. 

 

3.4 Dictionary Keys and Access 

Q: How are keys accessed in a dictionary, and what are the rules for key types? 

 

A: 

In Python, dictionary keys are accessed using square brackets ([]), or the get() method. The key 

must be unique and hashable (e.g., strings, numbers, and tuples). 

 

Example of accessing keys: 
my_dict = {'name': 'Alice', 'age': 25} 

print(my_dict['name']) # Output: Alice 

 

 Key Types: Keys must be immutable. Thus, types like strings, numbers, and tuples can 

be used as keys, but lists or other dictionaries cannot. 
 my_dict = {(1, 2): 'tuple'} # Valid key 

 # my_dict = {[1, 2]: 'list'} # Invalid key (will raise TypeError) 

 

The get() method can be used to safely access values without raising an exception: 

 
print(my_dict.get('name')) # Output: Alice 

print(my_dict.get('address', 'Not Found')) # Output: Not Found 

 

3.5 Sorting and Looping in Dictionaries 

Q: How can you loop through a dictionary and sort it in Python? 

 

A: 

In Python, dictionaries are unordered, but you can loop through them using for loops. You can 

also sort a dictionary by its keys or values using the sorted() function. 

 

Looping through a dictionary: 

You can loop through a dictionary in multiple ways: 

 

1. Loop through keys: 
2. my_dict = {'name': 'Alice', 'age': 25} 

3. for key in my_dict: 
4. print(key) # Output: name, age 

5. Loop through keys and values: 
6. for key, value in my_dict.items(): 
7. print(key, value) # Output: name Alice, age 25 

Sorting a dictionary: 

You can sort dictionaries by their keys or values: 



Python Programming Biyani’s Think Tank 
 

1. Sort by keys: 
2. my_dict = {'name': 'Alice', 'age': 25} 
3. sorted_keys = sorted(my_dict.keys()) 
4. print(sorted_keys) # Output: ['age', 'name'] 

5. Sort by values: 
6. sorted_items = sorted(my_dict.items(), key=lambda x: x[1]) 
7. print(sorted_items) # Output: [('age', 25), ('name', 'Alice')] 

 

3.6 Nested Dictionaries 

Q: What is a nested dictionary, and how can it be used? 

 

A: 

A nested dictionary is a dictionary that contains other dictionaries as its values. It allows for 

hierarchical data representation, where a dictionary can have another dictionary inside it. 

 

Example of a nested dictionary: 
nested_dict = { 

'student1': {'name': 'Alice', 'age': 25, 'course': 'Computer Science'}, 

'student2': {'name': 'Bob', 'age': 24, 'course': 'Mathematics'} 

} 

 

To access the values of a nested dictionary: 

 
print(nested_dict['student1']['name']) # Output: Alice 

print(nested_dict['student2']['course']) # Output: Mathematics 

 

Nested dictionaries are useful for representing complex data structures such as JSON data, student 

records, etc. 

 

 

 

3.7 File Objects and File Modes 

Q: What are file objects and file modes in Python? 

 

A: 

In Python, file objects represent the interface to a file on the disk, allowing you to interact with 

the file, such as reading from it, writing to it, or modifying it. File objects are created using the 

open() function. 

 

When opening a file, you need to specify a file mode, which determines how the file will be 

accessed (read, write, etc.). Some common file modes include: 

 

1. 'r': Read mode. The file must exist. 

2. 'w': Write mode. Creates a new file or overwrites an existing file. 

3. 'a': Append mode. Adds content to the end of the file. 

4. 'rb': Read mode in binary. 



Python Programming Biyani’s Think Tank 
 

5. 'wb': Write mode in binary. 

6. 'x': Exclusive creation mode. Creates a new file, but raises an error if the file already 

exists. 

Example: 
file = open('example.txt', 'r') # Open file for reading 

content = file.read() 

print(content) 

file.close() 

 

3.8 File Built-in Functions 

Q: What are some built-in functions for working with files in Python? 

 

A: 

Python provides several built-in functions to work with file objects: 

 

1. open(): Opens a file and returns a file object. 
2. file = open('file.txt', 'r') 

3. read(): Reads the content of the file. You can specify the number of bytes to read or leave 

it empty to read the whole file. 
4. content = file.read() 

5. readline(): Reads the next line from the file. 
6. line = file.readline() 

7. readlines(): Reads all the lines from the file and returns a list. 
8. lines = file.readlines() 

9. write(): Writes a string to the file. 
10. file.write('Hello, World!') 

11. writelines(): Writes a list of strings to the file. 
12. file.writelines(['Line 1\n', 'Line 2\n']) 

13. close(): Closes the file object. 
14. file.close() 

15. flush(): Flushes the internal buffer to the file. 
16. file.flush() 

17. seek(): Moves the file pointer to a specified position. 
18. file.seek(0) 

19. tell(): Returns the current position of the file pointer. 

 
position = file.tell() 

 

3.9 File Methods and Attributes 

Q: What are some methods and attributes used for file objects? 

 

A: 

File objects in Python come with a number of methods and attributes for file manipulation: 

 

1. file.read(size): Reads up to the specified size bytes from the file. 



Python Programming Biyani’s Think Tank 
 

2. file.readline(): Reads a single line from the file. 

3. file.readlines(): Reads all lines from the file and returns them as a list. 

4. file.write(string): Writes the specified string to the file. 

5. file.writelines(list): Writes a list of strings to the file. 

6. file.seek(offset): Moves the file pointer to the specified offset. 

7. file.tell(): Returns the current position of the file pointer. 

8. file.flush(): Flushes the internal buffer to the file. 

9. file.truncate(size): Truncates the file to the specified size. 

10. file.close(): Closes the file object. 

 

File Attributes: 

 

1. file.name: Returns the name of the file. 

2. file.mode: Returns the mode in which the file was opened. 

3. file.closed: Returns True if the file is closed. 

 

Example: 
with open('file.txt', 'r') as file: 

print(file.name) # Output: file.txt 

print(file.mode) # Output: r 

print(file.read()) 

 

3.10 Standard Files 

Q: What are standard files in Python? 

 

A: 

In Python, standard files refer to the predefined file objects for the input and output streams. 

These are: 

 

1. sys.stdin: Standard input stream. It is used to read input from the user or from other 

programs. 

2. sys.stdout: Standard output stream. It is used to write output to the terminal or console. 

3. sys.stderr: Standard error stream. It is used to write error messages. 

 

You can use these streams like normal file objects for input and output operations. 

 

Example: 
import sys 

sys.stdout.write('Hello, World!') # Output to standard output 
 

3.11 Command-line Arguments 

Q: How do you use command-line arguments in Python? 



Python Programming Biyani’s Think Tank 
 

A: 

Python allows you to pass arguments to a script through the command line. These arguments are 

stored in sys.argv, which is a list of strings. 

 

1. The first element (sys.argv[0]) is the script name. 

2. Subsequent elements are the command-line arguments passed to the script. 

 

To access and use these arguments, you need to import the sys module. 

 

Example: 
import sys 

print(f'Script name: {sys.argv[0]}') 

print(f'Arguments passed: {sys.argv[1:]}') 

 

Running the script: 

 
python script.py arg1 arg2 arg3 

 

Output: 

 
Script name: script.py 

Arguments passed: ['arg1', 'arg2', 'arg3'] 

 

3.12 File System and Execution 

Q: How can you interact with the file system in Python? 

 

A: 

Python provides several modules for interacting with the file system. The os module is commonly 

used for file and directory operations. 

 

1. os.getcwd(): Gets the current working directory. 

2. os.chdir(path): Changes the current working directory to the specified path. 

3. os.listdir(path): Lists all files and directories in the specified path. 

4. os.mkdir(path): Creates a new directory. 

5. os.remove(path): Deletes a file. 

 

The os module also includes functions for checking file existence, permissions, and more. 

 

Example: 
import os 

print(os.getcwd()) # Get current directory 

os.mkdir('new_directory') # Create a new directory 

os.remove('old_file.txt') # Remove a file 
 



Python Programming Biyani’s Think Tank 
 

3.13 Persistent Storage Modules 

Q: What are persistent storage modules in Python? 

 

A: 

Persistent storage refers to storing data in a way that allows it to persist after the program execution 

ends. Python provides several modules for handling persistent storage: 

 

1. pickle: Used to serialize and deserialize Python objects (i.e., save and load Python objects 

to/from a file). 
2. import pickle 
3. with open('data.pkl', 'wb') as file: 
4. pickle.dump(my_object, file) # Serialize and save object 

5. shelve: A module for storing Python objects in a dictionary-like format, supporting 

persistent storage. 
6. import shelve 
7. with shelve.open('data_shelf') as shelf: 
8. shelf['key'] = 'value' # Store data 

9. print(shelf['key']) # Access data 

10. sqlite3: A database interface module to interact with SQLite databases, allowing 

persistent data storage in databases. 
11. import sqlite3 

12. conn = sqlite3.connect('mydatabase.db') 

13. cursor = conn.cursor() 

14.cursor.execute('CREATE TABLE IF NOT EXISTS users (id INTEGER, name 

TEXT)') 

15. conn.commit() 

16. conn.close() 

 

 

3.14 Introduction and Motivation 

Q: What is the motivation behind using regular expressions (REs) in Python? 

 

A: 

Regular expressions (REs) provide a powerful way to perform pattern matching and text 

manipulation in Python. They allow developers to define search patterns that can match specific 

parts of a string, such as finding words, extracting data, or replacing text. 

 

Motivation for using REs includes: 

 

1. Text Search and Extraction: Regular expressions are particularly useful when you need 

to find or extract specific data within a large volume of text, such as emails, dates, or phone 

numbers. 

2. String Validation: REs are widely used for validating input strings, like checking if an 

email address or phone number matches the required format. 

3. Text Transformation: Regular expressions also allow text to be modified, for example, 

replacing specific patterns in a string, or splitting text into more manageable parts based 

on delimiters. 



Python Programming Biyani’s Think Tank 
 

4. Efficiency: Regular expressions provide an efficient way to search and manipulate text 

compared to writing manual string-processing code. 

 

In Python, the re module provides all the necessary functionality to work with regular expressions. 

 

 

3.15 Special Symbols and Characters in REs 

Q: What are the special symbols and characters used in regular expressions? 

 

A: 

In regular expressions, special symbols and characters are used to define patterns that can match 

multiple types of strings. Here are some of the most commonly used special symbols in REs: 

 

1. . (Dot): Matches any single character except for a newline. 

o Example: a.b will match "acb", "axb", "a1b", etc. 

2. ^ (Caret): Matches the start of a string. 

o Example: ^abc will match "abc" only if it appears at the beginning of the string. 

3. $ (Dollar Sign): Matches the end of a string. 

o Example: abc$ will match "abc" only if it appears at the end of the string. 

4. * (Asterisk): Matches zero or more occurrences of the preceding character or group. 

o Example: a*b will match "b", "ab", "aab", "aaab", etc. 

5.  + (Plus Sign): Matches one or more occurrences of the preceding character or group. 

o Example: a+b will match "ab", "aab", "aaab", etc., but not "b". 

6. ? (Question Mark): Matches zero or one occurrence of the preceding character or group. 

o Example: a?b will match "b" or "ab". 

7. [] (Square Brackets): Matches any one of the characters inside the brackets. 

o Example: [aeiou] matches any vowel in the string. 

8. | (Pipe): Acts as a logical OR, matching either the pattern before or after the |. 

o Example: cat|dog will match either "cat" or "dog". 

9. () (Parentheses): Used for grouping and capturing patterns. 

o Example: (abc)+ will match one or more occurrences of the string "abc". 

10. \ (Backslash): Escapes a special character, or specifies a special sequence. 

o Example: \\ matches a single backslash, \d matches any digit, \w matches any 

word character (alphanumeric). 

11. {} (Braces): Specifies the exact number of occurrences for the preceding character or 

group. 

o Example: a{2,4} matches "aa", "aaa", or "aaaa". 

12. \d: Matches any digit (0-9). 

o Example: \d{3} matches any three-digit number. 

13. \w: Matches any alphanumeric character (letters, digits, and underscores). 

o Example: \w+ matches one or more word characters. 

14. \s: Matches any whitespace character (spaces, tabs, newlines). 

o Example: \s+ matches one or more spaces. 



Python Programming Biyani’s Think Tank 
 

 
 

3.16 Using Regular Expressions in Python 

Q: How can regular expressions be used in Python to match and manipulate strings? 

 

A: 

In Python, the re module provides all the functions you need to work with regular expressions. 

Some of the most commonly used functions are: 

 

1. re.match(pattern, string): Tries to match the pattern at the start of the string. It 

returns a match object if the pattern is found at the beginning; otherwise, it returns None. 

o Example: 
o import re 

o result = re.match(r'^abc', 'abcdef') 

o if result: 

o print('Match found:', result.group()) 

o else: 

o print('No match') 

2. re.search(pattern, string): Scans through the string and finds the first location where 

the pattern matches. 

o Example: 
o result = re.search(r'abc', 'abcdef') 

o if result: 

o print('Match found:', result.group()) 

3. re.findall(pattern, string): Returns all non-overlapping matches of the pattern in 

the string as a list of strings. 

o Example: 
o result = re.findall(r'\d+', 'My phone number is 123-4567.') 

o print(result) # Output: ['123', '4567'] 

4. re.sub(pattern, replacement, string): Replaces occurrences of the pattern in the 

string with the replacement text. 

o Example: 
o result = re.sub(r'\d+', '###', 'My phone number is 123-4567.') 

o print(result) # Output: 'My phone number is ###-###.' 

5. re.split(pattern, string): Splits the string at each match of the pattern. 

o Example: 
o result = re.split(r'\s+', 'This is a sentence with spaces.') 

o print(result) # Output: ['This', 'is', 'a', 'sentence', 'with', 

'spaces.'] 

6. re.compile(pattern): Compiles a regular expression pattern into a regex object that can 

be used multiple times. 

o Example: 
o pattern = re.compile(r'\d+') 

o result = pattern.findall('My number is 1234 and my other number is 

5678.') 

o print(result) # Output: ['1234', '5678'] 

Example Program: 
import re 

 

# Matching a simple pattern 



Python Programming Biyani’s Think Tank 
 

text = 'My name is John and my phone number is 1234567890' 

pattern = r'\d{10}' 

 

# Search for a 10-digit phone number 

match = re.search(pattern, text) 

if match: 

print("Found a phone number:", match.group()) 

else: 

print("No phone number found.") 

 

Explanation: 

In this example, the pattern \d{10} is used to search for a sequence of 10 digits in the string. If a 

match is found, it prints the matched phone number. 

 

 

Conclusion: 

Regular expressions in Python offer a powerful and flexible way to work with text, from simple 

string searches to complex text manipulation. By mastering regular expressions, you can greatly 

improve your ability to process and analyze strings efficiently. 



Python Programming Biyani’s Think Tank 
 

Chapter 4 

Exceptions, Database Interaction, and 

Multithreading 
 

 

4.1 Concept of Exceptions 

Q:  What  is  an  exception  in  Python,  and  why  is  exception  handling  important? 

A: 

An exception in Python is an error that occurs during the execution of a program, disrupting its 

normal flow. These errors are often caused by unforeseen events like trying to divide by zero, 

accessing a file that doesn’t exist, or trying to access an index in a list that is out of range. 

 

Exceptions in Python are raised when something goes wrong, and the program flow is 

interrupted. If not handled, exceptions can cause the program to terminate abruptly, leading to 

loss of data or bad user experience. 

 

Exception handling is the process of anticipating and dealing with errors in a program. The 

primary goal of handling exceptions is to prevent the program from crashing and to provide a 

meaningful way of responding to errors, so the program can recover or gracefully exit. 

 

Python provides a try-except mechanism for handling exceptions. When an exception occurs in 

the try block, Python jumps to the corresponding except block to handle it. This allows the 

program to continue running even if an error occurs. 

 

Example: 

 
try: 

x = 5 / 0 # This will raise a ZeroDivisionError 

except ZeroDivisionError: 

print("You cannot divide by zero!") 

 

4.2 Handling Exceptions in Python 

Q: How does Python handle exceptions using the try-except block, and why is it useful? 

A: 

In Python, exceptions are handled using the try and except blocks. The purpose of using this 

mechanism is to catch and handle errors gracefully without terminating the entire program. 

Here's a breakdown of how it works: 

 

1. try block: This is where you place the code that might raise an exception. It is executed 

line by line until an exception occurs. 



Python Programming Biyani’s Think Tank 
 

2. except block: If an exception occurs in the try block, the program immediately jumps to 

the except block, where you can specify the type of exception you want to handle. 

3. else block: (Optional) This block runs if no exception occurs in the try block. 

4. finally block: (Optional) This block always executes, regardless of whether an exception 

occurred or not. It's often used for cleanup operations (e.g., closing files or releasing 

resources). 

 

The try-except mechanism helps maintain control over errors, making the program more 

robust and user-friendly. 

Example: 

try: 

num1 = int(input("Enter a number: ")) 

num2 = int(input("Enter another number: ")) 

result = num1 / num2 

except ZeroDivisionError: 

print("Cannot divide by zero!") 

except ValueError: 

print("Please enter valid integers.") 

else: 

print(f"The result is: {result}") 

finally: 

print("Execution completed.") 

 

4.3 Exception Objects and Strings 

Q:  What  are  exception  objects  in  Python,  and  how  can  you  access  them? 

A: 

An exception object is an instance of an exception class that represents the error that occurred 

during the program execution. When an exception is raised, an object is created, containing details 

about the exception (e.g., error type, message, stack trace). 

 

In Python, exceptions are objects that can be caught in the except block. You can access the 

exception's details, including the error message, by assigning it to a variable. This allows you to 

print or log the error message to inform the user about the problem. 

 

You can use the as keyword in the except block to capture the exception object and then access 

its attributes, such as the error message. 

Example: 

 
try: 

x = 5 / 0 

except ZeroDivisionError as e: 

print(f"Error occurred: {e}") # e is the exception object containing the 

message 

 

Output: 



Python Programming Biyani’s Think Tank 
 

Error occurred: division by zero 
 

4.4 Raising Exceptions 

Q: How do you manually raise exceptions in Python, and why might this be necessary? 

A: 

In Python, you can raise exceptions manually using the raise keyword. This is useful when you 

want to trigger an exception based on certain conditions in your code, even when no error has 

occurred yet. 

 

Raising exceptions manually is commonly used for input validation or when certain conditions in 

the program need to be enforced. For example, you might raise a ValueError if a user enters an 

invalid value. 

 

You can raise built-in exceptions like ValueError, TypeError, or define your own custom 

exceptions. Raising exceptions helps to control the flow of execution and allows the program to 

behave in a predictable way when an invalid state is encountered. 

 

Example: 

 
def divide(a, b): 

if b == 0: 

raise ValueError("Cannot divide by zero!") 

return a / b 

 

try: 

result = divide(10, 0) 

except ValueError as e: 

print(e) # Output: Cannot divide by zero! 

 

4.5 Assertions 

Q:   What   is   an   assertion   in   Python,   and   how   does   it   work? 

A: 

An assertion in Python is a debugging aid that tests whether a condition is true at a specific point 

in the program. It helps verify that certain assumptions or invariants are correct during the 

execution of the program. Assertions are used to check conditions that should never fail and help 

catch bugs early. 

 

If an assertion fails (i.e., the condition is False), Python raises an AssertionError exception, 

which can optionally include a message. If the condition is True, the program continues without 

interruption. 

 

Assertions are typically disabled when Python is run in optimized mode (with the -O flag), so 

they should not be used for critical checks that the program depends on. 

 

Example: 



Python Programming Biyani’s Think Tank 
 

x = 10 

assert x > 0, "x must be positive" # This will pass 

 

assert x < 0, "x must be negative" # This will raise an AssertionError with 

the message "x must be negative" 
 

4.6 Standard Exceptions 

Q: What are some common standard exceptions in Python, and when are they typically raised? 

A: 

Python provides several built-in exceptions that represent common types of errors that occur 

during program execution. Here are some standard exceptions and their typical use cases: 

 

1. ZeroDivisionError: Raised when attempting to divide a number by zero. 
2. x = 10 / 0 # ZeroDivisionError 

3. FileNotFoundError: Raised when trying to open a file that does not exist. 
4. with open("nonexistent_file.txt") as file: # FileNotFoundError 

5. content = file.read() 

6. IndexError: Raised when trying to access an element in a list using an index that is out of 

range. 
7. lst = [1, 2, 3] 
8. print(lst[5]) # IndexError 

9. TypeError: Raised when an operation or function is applied to an object of inappropriate 

type. 
10. x = "Hello" + 5 # TypeError: cannot concatenate 'str' and 'int' objects 

11. ValueError: Raised when a function receives an argument of the right type but an 

inappropriate value. 
12.x = int("abc") # ValueError: invalid literal for int() with base 10: 

'abc' 

 

Python provides many other built-in exceptions that allow you to handle specific error cases in a 

more granular way. By using specific exceptions, you can handle different error scenarios 

appropriately and provide meaningful feedback to users. 

 

 

 

4.7 SQL Database Connection using Python 

Q: How do you connect to an SQL database in Python using the sqlite3 module? What steps are 

involved  in  making  a  database  connection,  and  how  do  you  interact  with  it? 

A: 

To connect to an SQL database in Python, we can use the sqlite3 module, which is part of 

Python’s standard library. Here are the steps involved: 

 

1. Import the sqlite3 module: First, you import the sqlite3 module to work with SQLite 

databases in Python. 



Python Programming Biyani’s Think Tank 
 

2. Establish a connection: Use the sqlite3.connect() method to connect to an SQLite 

database. If the specified database does not exist, SQLite will automatically create it. If it 

exists, it connects to the existing database. 

3. Create a cursor object: A cursor is used to execute SQL queries. After connecting to the 

database, we create a cursor object using connection.cursor(). 

4. Perform operations: You can use SQL queries to perform various database operations 

such as creating tables, inserting data, or fetching data. 

5. Commit the changes: After making changes to the database (e.g., inserting data), use 

connection.commit() to save the changes. 

6. Close  the  connection:  Always  close  the  connection  to  the  database  using 

connection.close() when you're done. 

 

Example: 

 
import sqlite3 

 

# Establish a connection to the database 

connection = sqlite3.connect("example.db") 

# Create a cursor object to interact with the database 

cursor = connection.cursor() 

# Perform operations like creating tables, inserting data, etc. 

 

# Commit changes and close the connection 

connection.commit() 

connection.close() 

 

4.8 Creating and Searching Tables 

Q: How can you create a table in SQLite using Python and search for data in it? 

A: 

 

1. Creating a Table: You can create a table using the CREATE TABLE SQL statement. A table 

in an SQL database contains columns that store data values. Each column in the table has 

a specific data type, such as INTEGER, TEXT, or REAL. 

2. Searching for Data: After creating a table and inserting data, you can retrieve data from 

the table using the SELECT SQL query. This allows you to search the table based on 

conditions (e.g., retrieving rows where the age is greater than 20). 

 

Example: 

 
import sqlite3 

 

# Establish a connection to the database 

connection = sqlite3.connect("example.db") 

cursor = connection.cursor() 

 

# Create a table 



Python Programming Biyani’s Think Tank 
 

cursor.execute('''CREATE TABLE IF NOT EXISTS students (id INTEGER PRIMARY KEY, 

name TEXT, age INTEGER)''') 

 

# Insert data into the table 

cursor.execute("INSERT INTO students (name, age) VALUES ('Alice', 22)") 

# Search for data 

cursor.execute("SELECT * FROM students WHERE age > 20") 

results = cursor.fetchall() 

 

# Print the results 

for row in results: 

print(row) 

 

# Commit and close 

connection.commit() 

connection.close() 

 

4.9 Reading & Storing Configuration Info 

Q: How can you store and retrieve configuration information in an SQLite database using Python? 

A: 

In many applications, configuration data such as settings, preferences, or options needs to be stored 

and accessed easily. You can store configuration data in an SQLite database by creating a dedicated 

table to hold the configuration keys and their corresponding values. 

 

1. Create a configuration table: Define a table with columns for storing configuration keys 

and values. The key can be a string (e.g., "theme") and the value can be a string or another 

type (e.g., "dark", "light"). 

2. Store configuration data: Insert data into the configuration table using SQL INSERT 

statements. Each key-value pair represents a configuration setting. 

3. Retrieve configuration data: Use the SELECT statement to fetch configuration values 

based on the key. This allows the program to load settings when it starts. 

 

Example: 

 
import sqlite3 

# Connect to the database 

connection = sqlite3.connect("config.db") 

cursor = connection.cursor() 

 

# Create a configuration table 

cursor.execute('''CREATE TABLE IF NOT EXISTS config (key TEXT PRIMARY KEY, value 

TEXT)''') 

 

# Insert a configuration setting 

cursor.execute("INSERT INTO config (key, value) VALUES ('theme', 'dark')") 

 

# Retrieve a configuration value 

cursor.execute("SELECT value FROM config WHERE key = 'theme'") 

theme = cursor.fetchone()[0] 



Python Programming Biyani’s Think Tank 
 

print(f"The selected theme is: {theme}") 

 

# Commit changes and close the connection 

connection.commit() 

connection.close() 

 

4.10 Programming with Database Connections 

Q: How do you programmatically interact with a database using Python’s sqlite3 module, 

including    committing    transactions    and    closing    the    connection? 

A: 

To interact with a database in Python, the following steps are typically followed: 

 

1. Connect to the Database: Use sqlite3.connect() to create a connection to the SQLite 

database. 

2. Create a Cursor Object: After establishing a connection, a cursor object is created using 

connection.cursor(). The cursor is used to execute SQL queries. 

3. Execute SQL Queries: You can execute any SQL query using the cursor object, such as 

INSERT, UPDATE, or SELECT queries. 
4. Commit Changes: After executing any modification queries (e.g., inserting or updating 

data), you need to call connection.commit() to save the changes to the database. Without 

this, changes will not be persisted. 

5. Close the Connection: Once all operations are complete, you should always close the 

database connection using connection.close() to free up system resources. 

 

Example: 

 
import sqlite3 

 

# Connect to the database 

connection = sqlite3.connect("products.db") 

cursor = connection.cursor() 

 

# Create a table for products 

cursor.execute('''CREATE TABLE IF NOT EXISTS products (id INTEGER PRIMARY KEY, 

name TEXT, price REAL)''') 

# Insert data into the table 

cursor.execute("INSERT INTO products (name, price) VALUES ('Laptop', 1200.00)") 

# Commit the transaction to save changes 

connection.commit() 

 

# Close the connection 

connection.close() 
 

 

These examples show how to interact with a database using Python, covering the basics of 

connecting, querying, storing configuration data, and committing changes. 



Python Programming Biyani’s Think Tank 
 

Recommended exercises 

1. Write a program to demonstrate basic data type in python 

 

2. Create a list and perform the following methods 1) insert() 2) remove() 3) append() 4) len() 

5) pop() 6) clear() 

 

3. Create a tuple and perform the following methods 1) Add items 2) len() 3) check for item 

in 

4. tuple 4)Access items 

 

5. Create a dictionary and apply the following methods 1) Print the dictionary items 2) access 

items 3) use get() 4)change values 5) use len() 

 

6. Write a program to create a menu with the following options 1. TO PERFORM 

ADDITITON 2.TO PERFORM SUBTRACTION 3. TO PERFORM MULTIPICATION 

4. TO PERFORM DIVISION Accepts users input and perform the operation accordingly. 

Use functions with arguments. 

 

7. Write a python program to print a number is positive/negative using if-else. 

 

8. Write a program for filter() to filter only even numbers from a given list. 

 

9. Write a python program to print date, time for today and now 

10. Write a python program to add some days to your present date and print the date added. 

11. Write a program to count the numbers of characters in the string and store them in a 

dictionary data structure 

 

12. Write a program to count frequency of characters in a given file. 

 

13. Using a numpy module create an array and check the following: 1. Type of array 2. Axes 

of array Shape of array 4. Type of elements in array 

 

14. Write a python program to concatenate the dataframes with two different objects 

 

15. Write a python code to read a csv file using pandas module and print the first and last five 

lines of a file. 

16. Write a python program which accepts the radius of a circle from user and computes the 

area (use math module) 



Python Programming Biyani’s Think Tank 
 

 

 



Python Programming Biyani’s Think Tank 
 

 

 


