

Ms. Neha Tiwari

Biyani's Think Tank
Concept Based Notes

Software Engineering
BCA III Sem.

While every effort is taken to avoid errors or omissions in this Publication, any

mistake or omission that may have crept in is not intentional. It may be taken note of

that neither the publisher nor the author will be responsible for any damage or loss of

any kind arising to anyone in any manner on account of such errors and omissions.

Published by :

Think Tanks

Biyani Group of Colleges

Concept & Copyright :

Biyani Shikshan Samiti

Sector-3, Vidhyadhar Nagar,

Jaipur-302 023 (Rajasthan)

Ph : 0141-2338371, 2338591-95 Fax : 0141-2338007

E-mail : acad@biyanicolleges.org

Website :www.gurukpo.com; www.biyanicolleges.org

ISBN : 978-93-83462-35-3

Edition: 2025

Leaser Type Setted by :

Biyani College Printing Department

mailto:acad@biyanicolleges.org
http://www.gurukpo.com/
http://www.biyanicolleges.org/

Preface

I am glad to present this book, especially designed to serve the needs

of the students. The book has been written keeping in mind the general

weakness in understanding the fundamental concepts of the topics. The

book is self- explanatory and adopts the “Teach Yourself” style. It is based

on question- answer pattern. The language of book is quite easy and

understandable basedon scientific approach.

Any further improvement in the contents of the book by making

corrections, omission and inclusion is keen to be achieved based on

suggestions from the readers for which the author shall be obliged.

I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr.

Sanjay Biyani, Director (Acad.) Biyani Group of Colleges, who are the

backbones and main concept provider and also have been constant source of

motivation throughout this Endeavour. They played an active role in

coordinating the various stages of this Endeavour and spearheaded the

publishing work.

I look forward to receiving valuable suggestions from professors of

various educational institutions, other faculty members and students for

improvement of the quality of the book. The reader may feel free to send in

their comments and suggestions to the under mentioned address.

Author

Syllabus
Unit-I

Software Engineering Fundamentals: Software, Problem Domain, Software Engineering Challenges,

Software Processes (processes, projects & products, component), Software Requirement Analysis &

Specification. Software Development Process Models: Waterfall Model, Prototyping, Iterative Enhancement

Model, Spiral Model. Introduction to Agile Model: Principles, Steps, Various Agile Process Models.

Unit-II

Software Project Planning: Cost Estimation- Uncertainties in Cost Estimation, Building Cost Estimation

Models, On Size Estimation, COCOMO Model. Project Scheduling: Average Duration Estimation, Project

Scheduling & Milestones. Quality Assurance Plans: Verification & Validation, Inspection & Reviews.

Unit-III

Design Engineering: Design Process & Design Quality, Design Concepts (abstraction, architecture,

modularity, functional independence, refinement, and design classes), The Design Model (data design

elements, architectural design elements, interface design elements, component-level design elements,

deployment-level design elements). Testing Strategies & Tactics: A strategic approach to software testing,

Strategic issues, Software testing fundamentals, Test characteristics, Test Strategies for conventional

software: Unit Testing, Integration testing, Validation Testing, System testing, Black-Box testing, White Box

testing.

Unit-IV

Software Reliability: Risk Management,Measures of Reliability & Availability, Software Safety.

Maintenance and Reengineering: Introduction to: Software Maintenance, Software Supportability,

Reengineering, Reverse Engineering, Restructuring, and Forward Engineering.

Chapter-1

Introduction to Software Engineering

Q1. What is Software Engineering?

The term Software engineering is the product of two words, software, and engineering.

The software is a collection of integrated programs. Software subsists of carefully-organized

instructions and code written by developers on any of various particular computer languages.

Computer programs and related documentation such as requirements, design models and user

manuals. Engineering is the application of scientific and practical knowledge to invent, design, build,

maintain, and improve frameworks, processes, etc.

Q2. What are the needs of Software Engineering?

The necessity of software engineering appears because of a higher rate of progress in user requirements
and the environment on which the program is working.

o Huge Programming: It is simpler to manufacture a wall than to a house or building, similarly,

as the measure of programming become extensive engineering has to step to give it a scientific

process.

o Adaptability: If the software procedure were not based on scientific and engineering ideas, it
would be simpler to re-create new software than to scale an existing one.

o Cost: As the hardware industry has demonstrated its skills and huge manufacturing has let down

the cost of computer and electronic hardware. But the cost of programming remains high if the

proper process is not adapted.

8

o Dynamic Nature: The continually growing and adapting nature of programming hugely depends

upon the environment in which the client works. If the quality of the software is continually
changing, new upgrades need to be done in the existing one.

o Quality Management: Better procedure of software development provides a better and quality

software product.

Q3. What are the importances of Software Engineering?

The importance of Software engineering is as follows:

1. Reduces complexity: Big software is always complicated and challenging to progress. Software

engineering has a great solution to reduce the complication of any project. Software engineering

divides big problems into various small issues. And then start solving each small issue one by

one. All these small problems are solved independently to each other.

2. To minimize software cost: Software needs a lot of hardwork and software engineers are highly

paid experts. A lot of manpower is required to develop software with a large number of codes.

But in software engineering, programmers project everything and decrease all those things that

are not needed. In turn, the cost for software productions becomes less as compared to any

software that does not use software engineering method.

3. To decrease time: Anything that is not made according to the project always wastes time. And if

you are making great software, then you may need to run many codes to get the definitive

running code. This is a very time-consuming procedure, and if it is not well handled, then this

can take a lot of time. So if you are making your software according to the software engineering

method, then it will decrease a lot of time.

4. Handling big projects: Big projects are not done in a couple of days, and they need lots of

patience, planning, and management. And to invest six and seven months of any company, it

requires heaps of planning, direction, testing, and maintenance. No one can say that he has given

four months of a company to the task, and the project is still in its first stage. Because the

company has provided many resources to the plan and it should be completed. So to handle a big

project without any problem, the company has to go for a software engineering method.

5. Reliable software: Software should be secure, means if you have delivered the software, then it

should work for at least its given time or subscription. And if any bugs come in the software, the

company is responsible for solving all these bugs. Because in software engineering, testing and

maintenance are given, so there is no worry of its reliability.

6. Effectiveness: Effectiveness comes if anything has made according to the standards. Software

standards are the big target of companies to make it more effective. So Software becomes more

effective in the act with the help of software engineering.

Q4. What are the Software Processes?

The term software specifies to the set of computer programs, procedures and associated documents

(Flowcharts, manuals, etc.) that describe the program and how they are to be used.

A software process is the set of activities and associated outcome that produce a software product.

Software engineers mostly carry out these activities. These are four key process activities, which are

common to all software processes. These activities are:

1. Software specifications: The functionality of the software and constraints on its operation must

be defined.

2. Software development: The software to meet the requirement must be produced.

3. Software validation: The software must be validated to ensure that it does what the customer

wants.
4. Software evolution: The software must evolve to meet changing client needs.
12

Chapter 2

Software Development Life cycle

Q1.Describe the term of Software Development Life Cycle.

A software life cycle model (also termed process model) is a pictorial and diagrammatic representation

of the software life cycle. A life cycle model represents all the methods required to make a software

product transit through its life cycle stages. It also captures the structure in which these methods are to

be undertaken.

In other words, a life cycle model maps the various activities performed on a software product from its

inception to retirement. Different life cycle models may plan the necessary development activities to

phases in different ways. Thus, no element which life cycle model is followed, the essential activities are

contained in all life cycle models though the action may be carried out in distinct orders in different life

cycle models. During any life cycle stage, more than one activity may also be carried out.

10

SDLC Cycle

SDLC Cycle represents the process of developing software. SDLC framework includes the following

steps:

The stages of SDLC are as follows:

Stage1: Planning and requirement analysis

Requirement Analysis is the most important and necessary stage in SDLC.The senior members of the

team perform it with inputs from all the stakeholders and domain experts or SMEs in the industry.

Planning for the quality assurance requirements and identifications of the risks associated with the

projects is also done at this stage.

Business analyst and Project organizer set up a meeting with the client to gather all the data like what

the customer wants to build, who will be the end user, what is the objective of the product. Before

creating a product, a core understanding or knowledge of the product is very necessary.

For Example, A client wants to have an application which concerns money transactions. In this method,

the requirement has to be precise like what kind of operations will be done, how it will be done, in

which currency it will be done, etc.Once the required function is done, an analysis is complete with

auditing the feasibility of the growth of a product. In case of any ambiguity, a signal is set up for further

discussion.

Once the requirement is understood, the SRS (Software Requirement Specification) document is created.

The developers should thoroughly follow this document and also should be reviewed by the customer

for future reference.

Stage2: Defining Requirements

Once the requirement analysis is done, the next stage is to certainly represent and document the software

requirements and get them accepted from the project stakeholders.This is accomplished through "SRS"-

Software Requirement Specification document which contains all the product requirements to be

constructed and developed during the project life cycle.

Stage3: Designing the Software

The next phase is about to bring down all the knowledge of requirements, analysis, and design of the

software project. This phase is the product of the last two, like inputs from the customer and requirement

gathering.

Stage4: Developing the project

In this phase of SDLC, the actual development begins, and the programming is built. The

implementation of design begins concerning writing code. Developers have to follow the coding

guidelines described by their management and programming tools like compilers, interpreters,

debuggers, etc. are used to develop and implement the code.

Stage5: Testing

After the code is generated, it is tested against the requirements to make sure that the products are

solving the needs addressed and gathered during the requirements stage.During this stage, unit testing,

integration testing, system testing, acceptance testing are done.

Stage6: Deployment

Once the software is certified, and no bugs or errors are stated, then it is deployed.Then based on the

assessment, the software may be released as it is or with suggested enhancement in the object

segment.After the software is deployed, then its maintenance begins.

Stage7: Maintenance

Once when the client starts using the developed systems, then the real issues come up and requirements

to be solved from time to time.This procedure where the care is taken for the developed product is

known as maintenance.

Q2. Describe the Waterfall Model / Linear Sequential Model.

Ans.: Sometimes called the classic life cycle or the linear sequential model, the waterfall model is

a systematic, sequential approach to software development in whichdevelopment is seen as flowing

downwards (like a waterfall) that begins at the system level and progresses through analysis,

design, coding, testing and support. To follow the waterfall model, one proceeds from one phase to

the next in a sequential manner. For example, one first completes "requirements specification".

When the requirements are fully completed, one proceeds to design. The software is designed (on

paper) and this design should be a plan for implementing the requirements given. When the design

 12

Information

Modeling

Requirements

Analysis

Design

Code
Generation

Testing

Delivery &

Support

is fully completed, an implementation of that design, i.e. coding of the design is made by

programmers. After the implementation phases are complete, the software product is tested and

debugged; any faults introduced in earlier phases are removed here. Then the software product is

installed, and later maintained to add any new functions that the user needs and remove bugs. Thus

in a waterfall model, we can move to the next step only when the previous step is completed and

removed of all errors. There is no jumping back and forth or overlap between the steps in a

waterfall model.

The model consists of six distinct stages, namely :

(1) In the Information Modelling phase

(a) Work begins by gathering information related to the existing system. This will

consists of all items consisting of hardware, people, databases etc.

(2) In the requirements analysis phase

(a) The problem is specified along with the desired objectives (goals).

(b) The constraints are identified.

Software Engineering 13

(a) All information about the functions, behaviour, and performance

are documented and checked by the customers.

(3) In the design phase, all inputs, computations and outputs of the system should

be converted into a software model so that it can be coded by programmers.

The hardware requirements are also determined at this stage along with a

picture of the overall system architecture.

(4) In the code generation phase, the design has to be translated into a machine-

readable form using any of the programming languages available that is

suitable for the project.

(5) In the testing phase stage

(a) Once code is generated, testing begins.

(b) It focuses on all the statements of the software and removes all

errors.

(c) It ensures that proper input will produce actual results.

(d) Detailed documentation from the design phase can significantlyreduce the
coding effort.

(6) The delivery and support phase consists of delivering the final product to

the customer and then taking care of the maintenance of the product. In

this phase the software is updated to :

(a) Meet the changing customer needs

(b) Adapted to accommodate changes in the external environment

(c) Correct errors that were not previously known in the testing phases

(d) Enhancing the efficiency of the software

Q3.Explain the Prototyping Process Model.

Ans.: The prototyping model begins with the requirements gathering. The developer and the

customer meet and define the objectives for the software, identify the needs, etc. A „ quick design‟

is then created. This design focuses on those aspects of the software that will be visible to the

customer. It then leads to the construction of a prototype. The prototype is then checked by the

customer and any modifications or changes that are required are made to the prototype. Looping

takes place in this process and better versions of the prototype are created. These are continuously

shown to the user so that any new changes can be updated in the prototype. This process continues

till the user is satisfied with the system. Once a user is satisfied, the prototype is converted to the

actual system with all considerations for quality and security.

The prototype is considered as the „first system‟. It is advantageous because both

the customers and the developers get a feel of the actual system. But there are

certain problems with the prototyping model too.

(1) The prototype is usually created without taking into consideration overall

software quality.

 14

(2) When the customer sees a working model in the form of a prototype,and

then is told that the actual software is not created, the customer can get

irritated.

(3) Since the prototype is to be created quickly, the developer will use

whatever choices he has at that particular time (eg, he may not know a

good programming language, but later may learn. He then cannot change

the whole system for the new programming language). Thus the prototype

may be created with less-than-ideal choices.

Q4. Describe the Rapid Application Development Model. State itsdisadvantages.

Ans.: Rapid Application Development (RAD) is an incremental software development

process model that focuses on a very short development cycle. The RAD model is

a „high-speed‟ version of the linear sequential model. It enables a development

team to create a fully functional system within a very short time period (e.g. 60 to

90 days).

Business Modeling : The information flow among business functions is

modeled in a way that answers the following questions :

What information drives the business process?

What information is generated?

Who generates it?

Where does the information go?

Who processes it?

Data Modeling : It gives all the details about what data is to be used in the project.

All the information found in the business modeling phase is refined into a set of

data objects and the characteristics and the relationships between these objects are

defined.

Process Modeling : Here all the processes are defined that are needed to usethe

data objects to create the system. Processing descriptions are created for adding,

modifying, deleting, or retrieving a data object.

Application Generation : RAD makes use of the fourth generation techniques and

tools like VB, VC++, Delphi etc rather than creating software using conventional

third generation programming languages. The RAD reuses existing program

components (when possible) or creates reusable components (when necessary). In

all cases, automated tools (CASE tools) are used to facilitate construction of the

software.

Testing and Turnover : Since the RAD process emphasizes reuse, many of the

program components have already been tested. This minimizes the testing and

development time.

If a business application can be divided into modules, so that each major function

can be completed within the development cycle, then it is a candidate for the

RAD model. In this case, each team can be assigned a model, which is then

integrated to form a whole.

Disadvantages :

Software Engineering 15

· For Large projects, RAD requires sufficient resources to create the right

number of RAD teams.

· If a system cannot be properly divided into modules, building components for

RAD will be problematic

· RAD is not appropriate when technical risks are high, e.g. this occurs when anew

application makes heavy use of new technology.

Q5. Explain the Spiral Model. What are the advantages of this model?

Ans.: The spiral model, combines the iterative nature of prototyping with the controlled and

systematic aspects of the waterfall model, therein providing the potential for rapid

development of incremental versions of the software. In this model the software is

developed in a series of incremental releases with the early stages being either paper

models or prototypes. Later iterations become increasingly more complete versions of the

product.

As illustrated, the model is divided into a number of task regions.

These regions are :

(1) The customer communication task – to establish effective communication

between developer and customer.

(2) The planning task – to define resources, time lines and other project related

information..

(3) The risk analysis task – to assess both technical and management risks.

(4) The engineering task – to build one or more representations (prototypes) of

the application.

(5) The construction and release task – to construct, test, install and provide

user support (e.g., documentation and training).

(6) The customer evaluation task – to obtain customer feedback based on the

evaluation of the software representation created during the engineering stage

and implemented during the install stage.

 16

The evolutionary process begins at the centre position and moves in a clockwise

direction. Each traversal of the spiral typically results in a deliverable. For

example, the first and second spiral traversals may result in the production of a

product specification and a prototype, respectively. Subsequent traversals may then

produce more sophisticated versions of the software.

An important distinction between the spiral model and other software models is

the explicit consideration of risk. There are no fixed phases such as specification

or design phases in the model and it encompasses other process models. For example,

prototyping may be used in one spiral to resolve requirement uncertainties and hence

reduce risks. This may then be followed by a conventional waterfall development.

Advantages of the Spiral Model :

 The spiral model is a realistic approach to the development of large- scale

software products because the software evolves as the process progresses. In

addition, the developer and the client better understand and react to risks at

each evolutionary level.

The model uses prototyping as a risk reduction mechanism and allows for

the development of prototypes at any stage of the evolutionary

development.

It maintains a systematic stepwise approach, like the classic life cycle model,

but incorporates it into an iterative framework that more reflect the real world.

If employed correctly, this model should reduce risks before they become

problematic, as consideration of technical risks are considered at all stages.

Q6. What is Feasibility? Describe the different types of Feasibility.

Ans.: Feasibility is the determination of whether or not a project is worth doing. The

process followed in making this determination is called feasibility study. A

feasibility study is carried out to select the best system that meets performance

requirements. When conducting feasibility study, an analyst can consider 7 types of

feasibility:

Technical Feasibility : It is concerned with specifying the equipment and the

computer system that will satisfy and support the proposed user

requirements. Here we need to consider the configuration of the system which

tells the analyst how many work stations are required, how the units are

interconnected so that they can operate and communicate smoothly.

Operation Feasibility : It is related to human organizational aspects. The

points to be considered here are – what changes will be brought with the

system?, what new skills will be required?, do the existing staff members

have these skills and can they be trained?

 Economic Feasibility : It is the most frequently used technique for

evaluating a proposed system. It is also called Cost/Benefit Analysis. It is

used to determine the benefits and savings that are expected from the

proposed system and compare them with the costs. If benefits are more

than the cost, the proposed system is given an OK.

Software Engineering 17

Social Feasibility : It is a determination of whether the proposed system

will be acceptable to the people or not. It finds out the probability of the

project being accepted by the group of people who are directly affected by

the changed system.

 Management Feasibility : It is a determination of whether the proposed

system is acceptable to the management of the organization. The project may

be rejected, if the management does not accept the proposed system.

 Legal Feasibility : It is a determination of whether the proposed project is

under legal obligation of known Acts, Statutes, etc.

 Time Feasibility : It is a determination of whether the project will be

completed within a specified time period. If the project takes too much time, it

is likely to be rejected.

Chapter-3

Software Requirement Analysis

Q1. What is Software Requirement Specification - [SRS]?

Ans A Software requirements specification (SRS) is a description of a software system to

be developed. It lays out functional and non-functional requirements, and may

include a set of use cases that describe user interactions that the software must

provide.

Software requirements specification establishes the basis for an agreement between

customers and contractors or suppliers (in market-driven projects, these roles may be

played by the marketing and development divisions) onwhat the software product is

to do as well as what it is not expected to do. Software requirements specification

permits a rigorous assessment of requirements before design can begin and reduces

later redesign. It should also provide a realistic basis for estimating product costs,

risks, and schedules. Used appropriately, software requirements specifications

can help prevent software project failure

A software requirements specification (SRS) is a document that captures

complete description about how the system is expected to perform. It is usually

signed off at the end of requirements engineering phase.

Qualities of SRS:

 Correct

 Unambiguous

 Complete

 Consistent

 Ranked for importance and/or stability

 Verifiable

 Modifiable

 Traceable

 18

Types of Requirements:

The below diagram depicts the various types of requirements that are capturedduring

SRS.

Q2. What are the properties of a good SRS document.
Ans. Properties of a good SRS document. The essential properties of a good SRS document are the

following:

Concise: The SRS report should be concise and at the same time, unambiguous, consistent, and

complete. Verbose and irrelevant descriptions decrease readability and also increase error possibilities.

Structured: It should be well-structured. A well-structured document is simple to understand and

modify. In practice, the SRS document undergoes several revisions to cope up with the user

requirements. Often, user requirements evolve over a period of time. Therefore, to make the

modifications to the SRS document easy, it is vital to make the report well-structured.

Black-box view: It should only define what the system should do and refrain from stating how to do

these. This means that the SRS document should define the external behavior of the system and not

discuss the implementation issues. The SRS report should view the system to be developed as a black

box and should define the externally visible behavior of the system. For this reason, the SRS report is

also known as the black-box specification of a system.

Conceptual integrity: It should show conceptual integrity so that the reader can merely understand it.

Response to undesired events: It should characterize acceptable responses to unwanted events. These are

called system response to exceptional conditions.

Software Engineering 19

Verifiable: All requirements of the system, as documented in the SRS document, should be correct.

This means that it should be possible to decide whether or not requirements have been met in an

implementation.

Q3. Describe Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a

system. A neat and clear DFD can depict the right amount of the system requirement graphically. It can

be manual, automated, or a combination of both.

It shows how data enters and leaves the system, what changes the information, and where data is stored.

The objective of a DFD is to show the scope and boundaries of a system as a whole. It may be used as a

communication tool between a system analyst and any person who plays a part in the order that acts as a

starting point for redesigning a system. The DFD is also called as a data flow graph or bubble chart.

The following observations about DFDs are essential:

1. All names should be unique. This makes it easier to refer to elements in the DFD.

2. Remember that DFD is not a flow chart. Arrows is a flow chart that represents the order of events;

arrows in DFD represents flowing data. A DFD does not involve any order of events.

3. Suppress logical decisions. If we ever have the urge to draw a diamond-shaped box in a DFD,

suppress that urge! A diamond-shaped box is used in flow charts to represents decision points with

multiple exists paths of which the only one is taken. This implies an ordering of events, which makes

no sense in a DFD.

4. Do not become bogged down with details. Defer error conditions and error handling until the end of

the analysis.

 20

Circle: A circle (bubble) shows a process that transforms data inputs into data outputs.

Data Flow: A curved line shows the flow of data into or out of a process or data store.

Data Store: A set of parallel lines shows a place for the collection of data items. A data store indicates

that the data is stored which can be used at a later stage or by the other processes in a different order.

The data store can have an element or group of elements.

Source or Sink: Source or Sink is an external entity and acts as a source of system inputs or sink of

system outputs.

Levels in Data Flow Diagrams (DFD)

The DFD may be used to perform a system or software at any level of abstraction. Infact, DFDs may be

partitioned into levels that represent increasing information flow and functional detail. Levels in DFD

are numbered 0, 1, 2 or beyond. Here, we will see primarily three levels in the data flow diagram, which

are: 0-level DFD, 1-level DFD, and 2-level DFD.

0- level DFDM

It is also known as fundamental system model, or context diagram represents the entire software

requirement as a single bubble with input and output data denoted by incoming and outgoing arrows.

Then the system is decomposed and described as a DFD with multiple bubbles. Parts of the system

represented by each of these bubbles are then decomposed and documented as more and more detailed

DFDs. This process may be repeated at as many levels as necessary until the program at hand is well

understood. It is essential to preserve the number of inputs and outputs between levels, this concept is

called leveling by DeMacro. Thus, if bubble "A" has two inputs x1 and x2 and one output y, then the

expanded DFD, that represents "A" should have exactly two external inputs and one external output as

shown in fig:

The Level-0 DFD, also called context diagram of the result management system is shown in fig. As the

bubbles are decomposed into less and less abstract bubbles, the corresponding data flow may also be

needed to be decomposed.

Software Engineering 21

1- level DFD

In 1-level DFD, a context diagram is decomposed into multiple bubbles/processes. In this level, we

highlight the main objectives of the system and breakdown the high-level process of 0-level DFD into

sub processes.

2- Level DFD

2-level DFD goes one process deeper into parts of 1-level DFD. It can be used to project or record the

specific/necessary detail about the system's functioning.

 22

Chapter-4

Software Project Planning
Q1. What is Software project planning. Describe the need of Project management?

A Software Project is the complete methodology of programming advancement from requirement gathering to

testing and support, completed by the execution procedures, in a specified period to achieve intended software

product.

Software Engineering 23

Need of Software Project Management:-

Software development is a sort of all new streams in world business, and there's next to no involvement

in structure programming items. Most programming items are customized to accommodate customer's

necessities. The most significant is that the underlying technology changes and advances so generally

and rapidly that experience of one element may not be connected to the other one. All such business and

ecological imperatives bring risk in software development; hence, it is fundamental to manage software

projects efficiently.

Q2. What are the work of Software Project Manager?

Software manager is responsible for planning and scheduling project development. They manage the

work to ensure that it is completed to the required standard. They monitor the progress to check that the

event is on time and within budget. The project planning must incorporate the major issues like size &

cost estimation scheduling, project monitoring, personnel selection evaluation & risk management. To

plan a successful software project, we must understand:

o Scope of work to be completed

o Risk analysis

o The resources mandatory

o The project to be accomplished

o Record of being followed

Software Project planning starts before technical work start. The various steps of planning activities are:

Q3. Define the Software Cost Estimation.

For any new software project, it is necessary to know how much it will cost to develop and how much

development time will it take. These estimates are needed before development is initiated, but how is

this done? Several estimation procedures have been developed and are having the following attributes in

common.

 24

1. Project scope must be established in advanced.

2. Software metrics are used as a support from which evaluation is made.

3. The project is broken into small PCs which are estimated individually.

To achieve true cost & schedule estimate, several option arise.

4. Delay estimation

5. Used symbol decomposition techniques to generate project cost and schedule estimates.

6. Acquire one or more automated estimation tools.

Uses of Cost Estimation

1. During the planning stage, one needs to choose how many engineers are required for the project

and to develop a schedule.

2. In monitoring the project's progress, one needs to access whether the project is progressing

according to the procedure and takes corrective action, if necessary.

Cost Estimation Models

A model may be static or dynamic. In a static model, a single variable is taken as a key element for

calculating cost and time. In a dynamic model, all variable are interdependent, and there is no basic

variable.

Static, Single Variable Models: When a model makes use of single variables to calculate desired

values such as cost, time, efforts, etc. is said to be a single variable model. The most common equation

is:

C=aL
b

Where C = Costs

L= size

a and b are constants

The Software Engineering Laboratory established a model called SEL model, for estimating its software

production. This model is an example of the static, single variable model.

Software Engineering 25

E=1.4L
0.93

DOC=30.4L
0.90

D=4.6L
0.26

Where E= Efforts (Person Per Month)

DOC=Documentation (Number of Pages)

D = Duration (D, in months)

L = Number of Lines per code

Static, Multivariable Models: These models are based on method (1), they depend on several

variables describing various aspects of the software development environment. In some model,

several variables are needed to describe the software development process, and selected equation

combined these variables to give the estimate of time & cost. These models are called

multivariable models.

WALSTON and FELIX develop the models at IBM provide the following equation gives a
relationship between lines of source code and effort:

E=5.2L
0.91

In the same manner duration of development is given by

D=4.1L
0.36

The productivity index uses 29 variables which are found to be highly correlated productivity as

follows:

Where Wi is the weight factor for the i

th
variable and Xi={-1,0,+1} the estimator gives Xione of the

values -1, 0 or +1 depending on the variable decreases, has no effect or increases the productivity.

Example: Compare the Walston-Felix Model with the SEL model on a software development expected

to involve 8 person-years of effort.

a. Calculate the number of lines of source code that can be produced.

b. Calculate the duration of the development.

c. Calculate the productivity in LOC/PY

d. Calculate the average manning

Solution:

The amount of manpower involved = 8PY=96persons-months

(a) Number of lines of source code can be obtained by reversing equation to give:

 26

Then

L (SEL) = (96/1.4)1⁄0.93=94264 LOC
L (SEL) = (96/5.2)1⁄0.91=24632 LOC

(b) Duration in months can be calculated by means of equation

D (SEL) = 4.6 (L) 0.26

= 4.6 (94.264)0.26 = 15 months

D (W-F) = 4.1 L
0.36

= 4.1 (24.632)0.36 = 13 months

(c) Productivity is the lines of code produced per persons/month (year)

(d) Average manning is the average number of persons required per month in the project

Q4.What is a Data Dictionary? Give an example.

Ans.: A Data Dictionary (DD) is a structured repository of data about data. It is a set of

accurate definitions of all DFD data elements and data structures. A data dictionary defines

each term encountered during the analysis and designof a new system. Data dictionary is the

place where we keep the details of the contents of data flows, data stores & processes.

Without a data dictionary the development of large systems becomes difficult. The data

dictionary is an effective solution to the problem of complicated nature. The main purpose

of a data dictionary is to provide a source of reference in which the analyst, the user, the

designer can look up & find out its content and any other relevant information.

The main advantage of a DD is the documentation. It is a valuable reference to the

organization which helps in communication between the analyst and the user. It is also

important in building a database.

The Data Dictionary notations are

= is composed of

Software Engineering 27

+ AND

() Optional value[

] Either/Or

{} iteration

** comment

@ identifier (key field)

separates alternative choices in the [] construct

Examples of Data dictionary –

Name = Courtesy-Title + First-Name + (Middle-Name) + Last-Name

Courtesy-Title = [Mr. | Miss | Mrs. | Ms. | Dr. | Prof.]

First-Name = { Legal-Character }

Last-Name = { Legal-Character }

Legal-Character = [A-Z | a-z |0-9| ' | - | |]

Q5.Briefly describe a Decision Tree with example.

Ans.: Decision tree are graphical representation methods of representing a sequence of

logical decisions. It is mainly used when decisions need to be taken or for

defining policies. A decision tree has as many branches as there are logical

alternatives. It is easy to construct, easy to read and easy to update. A decision tree

is used to identify the strategy most likely to reach a goal. It isalso used as a means

for calculating probabilities or making financial or number based decisions. A

decision making tree is essentially a diagram that represents, in a specially organized

way, the decisions, the main external or other events that introduce uncertainty, as

well as possible outcomes of all those decisions and events.

Q6.How to draw a Decision Tree?

Ans.: You start a decision tree with a decision that needs to be made. This decision is

represented by a small square towards the left of a large piece of paper. From this

box draw out lines towards the right for each possible solution, and write that solution

along the line. At the end of each solution line, considerthe results. If the result of

taking that decision is uncertain, draw a small circle. If the result is another

decision that needs to be made, draw another square. Squares represent decisions;

circles represent uncertainty or random factors. Write the decision or factor to

be considered above the square or circle. If you have completed the solution at the

end of the line, just

 28

leave it blank. Starting from the new decision squares on your diagram, drawout

lines representing the options that could be taken. From the circles, drawout lines

representing possible outcomes. Again mark a brief note on the line saying what it

means. Keep on doing this until you have drawn down as many of the possible

outcomes and decisions as you can see leading on from your original decision.

Example : Book return policy in library

If a Faculty returns a book late, a fine of 5% of the book rate is charged. If a

Student returns a book late by 3 days, fine is 10%, else 20% of book rate.

Q7.

Ans.: Decision tables are a precise yet compact way to model complicated logic. Decision

tables, like if-then-else and switch-case statements, associate conditions with actions to

perform. But, unlike the control structures found in traditional programming languages,

decision tables can associate many independent conditions with several actions in an elegant

way. Decision tables are typically divided into four quadrants, as shown below.

On Time

No Fine

Faculty

Book Return

Late 5% Fine

On Time No Fine

Student <3 days
10 % Fine

Late

>3 days 20% Fine

What are Decision Tables? Explain with example.

Software Engineering 29

The four quadrants

Conditions Condition alternatives

Actions Action entries

Each decision corresponds to a variable, relation or predicate whose possible values

are listed among the condition alternatives. Each action is a procedureor operation

to perform, and the entries specify whether (or in what order) the action is to be

performed for the set of condition alternatives the entrycorresponds to. Many decision

tables include in their condition alternatives the don't care symbol, a hyphen.

Using don't cares can simplify decision tables, especially when a given condition

has little influence on the actions to be performed. In some cases, entire conditions

thought to be important initially are found to be irrelevant when none of the

conditions influence which actions are performed. The limited-entry decision table

is the simplestto describe. The condition alternatives are simple boolean values, and

the action entries are check-marks, representing which of the actions in a given

column are to be performed.

A technical support company writes a decision table to diagnose printer problems

based upon symptoms described to them over the phone from theirclients.

Printer troubleshooter

Rules

Conditions

Printer does not print Y Y Y Y N N N N

A red light is flashing Y Y N N Y Y N N

Printer is unrecognized Y N Y N Y N Y N

Actions

Check the power cable

X

Check the printer-computer cable X

X

S30ystem Analysis and Design 4317

Ensure printer software is installed X

X

X

X

Check/replace ink X X

X X

Check for paper jam

X

X

Decision tables make it easy to observe that all possible conditions are accounted for. In the

example above, every possible combination of the three conditions is given. In decision tables,

when conditions are omitted, it is obvious even at a glance that logic is missing. Compare

this to traditional control structures, where it is not easy to notice gaps in program logic with

a mere glance --- sometimes it is difficult to follow which conditions correspond to which

actions!

Just as decision tables make it easy to audit control logic, decision tables demand that a

programmer think of all possible conditions. With traditional control structures, it is easy to

forget about corner cases, especially when the else statement is optional. Since logic is so

important to programming, decision tables are an excellent tool for designing control

logic.

Chapter-5

Testing Strategies& Maintenance

Q1.Explain System Testing.

Ans.: Once source code has been generated, software must be tested to remove and

correct as many errors as possible before delivery to the customer. The goal of system

testing is to design a series of test cases that have a high likelihood of finding errors.

Testing is the process of examining a product to determine what defects it contains. An

information system is an integrated collection of software components. Components can

be tested individually or in groups, orthe entire system can be tested as a whole. Testing is

necessary for the successof the system. A small system error can explode into a much

larger problem.

The proper choice of test data is as important as the test itself. If the test data that is

inputted is not valid or according to the requirements, the reliability of the output will be low.

Test data may be artificial or live. Artificial data is created only for testing purposes. Live

data on the other hand, is taken from the users actual files. So there can be bias toward

correct values. The design of tests for software products is also a very important topic. The

designs may be White Box testing or Black Box testing.

Q2.What is Unit Testing?

Ans.: A strategy for software testing may be viewed as a spiral. Unit testing begins at

the center of the spiral. Testing progresses by moving outward to integration

testing, then towards validation testing and finally system testing.

Unit testing is the process of testing individual code modules before they are

integrated with other modules. The unit being testing can be a function,

subroutine, procedure or method. Units can also be very small groups of

interrelated modules that are always executed as a group. The goal of unit testing

is to identify and fix as many errors as possible before modules are combined into

large units. Errors become more difficult and expensive to locate and fix when

many modules are combined. Here the module interface is tested to see that

information flows in and out of the program unit properly. It makes use of white

box testing. Because a component is not a stand-alone program, a driver and/or

stub software must be developed for each unit test. A driver is like a main

program that accepts test case data, passes the data to the component and prints

the results. A stub replaces modules that are subordinate the component to be

tested. It uses the subordinate modules interface, does data manipulation, prints

the result of entry and then returns control to the module undergoing the test.

Q3.Breifly describe what is Software Quality Assurance.

Ans.: Quality is a characteristic and attribute of something, which is measurable.There can

be two types of quality: quality of design – it is the characteristics that the

designers specify which will include the materials used, performance

specifications, etc. and quality of conformance – which is the degree to whichthe

design specifications are followed during the manufacturing process. Software

Quality Assurance (SQA) consists of a means of monitoring the software

engineering processes to ensure quality. It provides management with the data

necessary to be informed about product quality. Software today is being developed

in rapid speeds and this affects its quality. Software that is developed needs to

meet certain standards for it to be certified and used by users. Software quality

assurance is thus useful to keep the software development process in check and see

that quality products are created forthe market. Just as a team of members that are

used for the development process, a SQA group is a group that assists the

software team in achieving a high quality end product.

 32

The software life cycle includes various stages of development, and each stage

has a goal of quality assurance. Several factors determine the quality ofa system.

Among them are correctness, reliability, efficiency, usability, accuracy, etc. There

are three levels of quality assurance: testing, validation and certification.

In system testing, the goal is to remove the errors in the software. This is

extremely difficult and time-consuming. The system needs to be put through a

“fail-test” so that we know what will make the system fail. A successful test is

one that can uncover the errors so that the system can then be corrected toreach a

good level of quality.

System validation checks the quality of the software in both simulated and live

environments. First the software is passed through the simulated environment (not

live) where the errors and failures are checked based on artificial data and user

requirements. This is also known as alpha testing. The software is tested and verified

and all changes are then made to the software. This modified software is them sent

through the second phase that is the live environment. This is called beta testing

where the software is sent to the user‟s site. Here the system will go through actual

user data and requirements. After a scheduled time, failures and errors are

documented and final correction and enhancements are made before the software is

released for use.

The third level is to certify that the program or software package is correct and

conforms to all standards. Nowadays, there is trend towards buying of ready-to-

use software. So certification is of utmost importance. A package that is certified

goes through a team of specialists who test, review, and determine how well it

meets the vendor‟s claims. Certification is actually issued after the package

passes the test.

Q4.Explain Software Maintenance. Describe its classification.

Ans.: The last part of the system development life cycle is system maintenance which is

actually the implementation of the post-implementation plan. When systems are

installed, they are generally used for long periods. This period ofuse brings with it

the need to continually maintain the system. Maintenance accounts for 50-80% if the

total system development. Maintenance is not as rewarding and exciting as

developing systems.

Maintenance can be classified as :

(1) Corrective : It means repairing, processing or performance failures or making

changes because of previously uncorrected problems.

(2) Adaptive : It means changing the program functions.

(3) Perfective : It means enhancing the performance or modifying the programs

to respond to the users additional or changing needs

The greatest amount of time is spent on perfective. Maintenance covers a wide

range of activities including correcting coding and design errors, updating

documentation and test data.

Q5.Diffrence between validation & Verification?

Ans : Verification and Validation example is also given just below to this table.

Verification Validation

1. Verification is a static practice of

verifying documents, design, code and

program.

1. Validation is a dynamic mechanism of

validating and testing the actual

product.

2. It does not involve executing the

code.

2. It always involves executing the code.

3. It is human based checking of

documents and files.

3. It is computer based execution of

program.

4. Verification uses methods like

inspections, reviews, walkthroughs, and

Desk-checking etc.

4. Validation uses methods like black

box (functional) testing, gray box

testing, and white box (structural)

testing etc.

5. Verification is to check whether the
software conforms to specifications.

5. Validation is to check whether
software meets the customer

expectations and requirements.

6. It can catch errors that validation

cannot catch. It is low level exercise.

6. It can catch errors that verification

cannot catch. It is High Level Exercise.

7. Target is requirements specification,

application and software architecture,

high level, complete design, and

database design etc.

7. Target is actual product-a unit, a

module, a bent of integrated modules, and

effective final product.

8. Verification is done by QA team to

ensure that the software is as per the

specifications in the SRS document.

8. Validation is carried out with the

involvement of testing team.

9. It generally comes first-done before

validation.
9. It generally follows after verification.

 34

Q.6. Differences Between Black Box Testing and White Box Testing?

Ans The Differences Between Black Box Testing and White Box Testing are listed
below.

Criteria Black Box Testing White Box Testing

Definition

Black Box Testing is a software

testing method in which the internal

structure/ design/ implementation of

the item being tested is NOT known

to the tester

White Box Testing is a software

testing method in which the

internal structure/ design/

implementation of the item being

tested is known to the tester.

Levels
Applicable To

Mainly applicable to higher levels

of testing:Acceptance Testing

System Testing

Mainly applicable to lower

levels of testing: Unit Testing

Integration Testing

Responsibility
Generally, independent Software

Testers
Generally, Software Developers

Programming
Knowledge Not Required Required

Implementation
Knowledge Not Required Required

Basis for Test
Cases Requirement Specifications Detail Design

Q7.What are the differences between Alpha Testing and Beta Testing?

Alpha testing is a type of acceptance testing, which is performed to identify all possible bugs/issues

before releasing the product to the end-user. Alpha test is a preliminary software field test carried out by

a team of users to find out the bugs that were not found previously by other tests. Alpha testing is to

simulate a real user environment by carrying out tasks and operations that actual user might perform.

Alpha testing implies a meeting with a software vendor and client to ensure that the developers

appropriately meet the client's requirements in terms of the performance, functionality, and durability of

the software.

Alpha testing needs lab environment, and usually, the testers are an internal employee of the

organization. This testing is called alpha because it is done early on, near the end of the software

development, but before beta testing.

Beta Testing is a type of acceptance testing; it is the final test before shipping a product to the

customers. Beta testing of a product is implemented by "real users "of the software application in a "real

environment." In this phase of testing, the software is released to a limited number of end-users of the

product to obtain feedback on the product quality. It allows the real customers an opportunity to provide

inputs into the design, functionality, and usability of the product. These inputs are essential for the

success of the product. Beta testing reduces product failure risks and increases the quality of the product

through customer validation. Direct feedback from customers is a significant advantage of beta testing.

This testing helps to tests the software in a real environment. The experiences of the previous users are

forwarded back to the developers who make final changes before releasing the software product.

KEY TERMS

Abstract Class A class that has no direct instances, but whose descendants

may have direct instances.

Abstract operation Defines the form or protocol of the operation, but not its

implementation.

Acceptance testing The process whereby actual users test a completed

information system, the end result of which is the users

acceptance of the system.

Access method

Action stubs

Activation

Actor

An operating system algorithm for storing and locating data

in secondary memory.

That part of a decision table that lists the actions that result
for a given set of conditions.

The time period during which an object performs an

operation.

An external entity that interacts with the system (similar to an
external entity in data flow diagramming).

Adaptive maintenance Changes made to a system to evolve its functionality to

changing business needs or technologies.

Afferent module A module of a structure chart related to input to the system.

Affinity clustering The process of arranging planning matrix information so that

clusters of information with some predetermined level or type

of affinity are placed next to each other on a matrix report.

Aggregation A part-of relationship between a component object and an

aggregate object.

Alias

Alpha testing

Analysis

Analysis tools

Anomalies

An alternative name given to an attribute.

User testing of a completed information system using

simulated data.

The third phase of the SDLC in which the current system is
studied and alternative replacement systems are proposed.

CASE tools that enable automatic checking for incomplete,

inconsistent, or incorrect specifications in diagrams, forms,

and reports.

Errors or inconsistencies that may result when a user attempts
to update a table that contains redundant data. There are three

 36

types of anomalies: insertion, deletion, and modification

anomalies.

Application independence The separation of data and the definition of data from the

applications that use these data.

Application program

interface (API)

Application server

Application software

Association

Association class

Associationrole

Associative entity

Asynchronous message

Attribute

Audit trail

Authorization rules

Backward recovery

(rollback)

Balancing

Software which allows a specific front-end program

development platform to communicate with a particular back-

end database engine, even when the front-end and back-end

were not built to be compatible.

A computing server where data analysis functions primarily

reside.

Computer software designed to support organizational
functions or processes.

A relationship between object classes

An association that has attributes or operations of its own, or
that participates in relationships with other classes.

The end of an association which connects it to a class.

An entity type that associates the instances of one or more

entity types and contains attributes that are peculiar to the

relationship between those entity instances. Also called a

gerund.

A message in which the sender does not have to wait for the

recipient to handle the message.

A named property or characteristic of an entity that is of
interest to the organization.

A list of changes to a data file which allows business

transactions to be traced. Both the updating and use of data

should be recorded in the audit trail, since the consequences

of bad data should be discovered and corrected.

Controls incorporated to restrict access to systems and data

and also to restrict the actions that people may take once in

the system.

An approach to rebuilding a file in which before images of
changed records are restored to the file in reverse order until

some earlier state is achieved.

The conservation of inputs and outputs to a data flow diagram

process when that process is decomposed to a lower level.

Baseline modules Software modules that have been tested, documented, and

approved to be included in the most recently created version

of a system.

Baseline Project Plan A major outcome and deliverable from the project initiation

and planning phase which contains the best estimate of a

projectâs scope, benefits, costs, risks, and resource

requirements.

Batch processing Information that is collected or generated at some

predetermined time interval and can be accessed via hard

copy or on-line devices.

Behavior Represents how an object acts and reacts.

Beta testing User testing of a completed information system using real
data in the real user environment.

Binary relationship A relationship between instances of two entity types. This is

the most common type of relationship encountered in data

modeling.

Biometric device An instrument that detects personal characteristics such as

fingerprints, voice prints, retina prints, or signature dynamics.

Blocking factor The number of physical records per page.

Bottom-up planning A generic information systems planning methodology that

identifies and defines IS development projects based upon

solving operational business problems or taking advantage of

some business opportunities.

Boundary The line that marks the inside and outside of a system and
which sets off the system from its environment.

Build routines Guidelines that list the instructions to construct an executable

system from the baseline source code.

Business case The justification for an information system, presented in

terms of the tangible and intangible economic benefits and

costs, and the technical and organizational feasibility of the

proposed system.

Business Process

Reengineering (BPR)

The search for, and implementation of, radical change in

business processes to achieve breakthrough improvements in

products and services.

 38

Business rules Specifications that preserve the integrity of a conceptual or logical data model.

Calculated field A field which can be derived from other database fields. Also called computed or

derived field.

Candidate key An attribute (or combination of attributes) that uniquely. identifies each

instance of an entity type.

Cardinality The number of instances of entity B that can (or must) beassociated

with each instance of entity A.

Central transform The area of a transform-centered information system where the most

important derivation of new information takes place.

Class diagram

Class-scope attribute

Client

Client/server architecture

Closed-ended questions

Closed system

Code generators

Cohesion

Command language

interaction

Shows the static structure of an object-oriented model: the

object classes, their internal structure, and the relationships in
which they participate.

An attribute of a class that specifies a value common to an
entire class, rather than a specific value for an instance.

The (front-end) portion of the client/server database system

that provides the user interface and data manipulation

functions.

A LAN-based computing environment in which a central

database server or engine performs all database commands

sent to it from client workstations, and application programs

on each client concentrate on user interface functions.

Questions in interviews and on questionnaires that ask those

responding to choose from among a set of prespecified

responses.

A system that is cut off from its environment and does not
interact with it.

CASE tools that enable the automatic generation of program

and database definition code directly from the design

documents, diagrams, forms, and reports stored in the

reposito

The extent to which a system or a subsystem performs a
single function.

A human-computer interaction method where users enter

explicit statements into a system to invoke operations.

A limit to what a system can accomplish.

Competitive strategy The method by which an organization attempts to achieve its

mission and objectives.

Component An irreducible part or aggregation of parts that make up a
system, also called a subsystem.

Component diagram Shows the software components or modules and their

dependencies.

Composition A part object that belongs to only one whole object and lives

and dies with the whole.

Computer-aided software Software tools that provide automated support for some

engineering (CASE) portion of the systems development process.

Computing infrastructure All the resources and practices required to help people

adequately use computer systems to do their primary work.

Conceptual data model A detailed model that captures the overall structure of

organizational data while being independent of any database

management system or other implementation considerations.

Concrete class A class that can have direct instances.

Concurrency control A method for preventing loss of data integrity due to

Condition stubs

Configuration management

Constraint

Constructor operation

Context diagram

interference between users in a multiuser environment.

That part of a decision table that lists the conditions relevant

to the decision.

The process of assuring that only authorized changes are

made to a system.

An operation that creates a new instance of a class.

An overview of an organizational system that shows the

system boundary, external entities that interact with the

system, and the major information flows between the entities

and the system.

Corporate strategic

planning

An ongoing process that defines the mission, objectives, and

strategies of an organization.

Corrective maintenance Changes made to a system to repair flaws in its design,

coding, or implementation.

Coupling The extent to which subsystems depend on each other.

 40

Critical path scheduling A scheduling technique where the order and duration of a

sequence of activities directly affect the completion date of a

project.

Cross life cycle CASE CASE tools designed to support activities that occur across

multiple phases of the systems development life cycle.

Cross referencing A feature performed by a data dictionary that enables one

description of a data item to be stored and accessed by all

individuals so that a single definition for a data item is

established and used.

Data Raw facts about people, objects, and events in an
organization.

Pattern matching and other methods which replace repeating
strings of characters with codes of shorter length.

A diagrammatic representation of the data exchanged
between two modules in a structure chart.

The repository of all data definitions for all organizational
applications.

Data in motion, moving from one place in a system to

another.

Data store

Data type

Database

Database engine

Database management

system (DBMS)

A detailed coding scheme recognized by system software for
representing organizational data.

A shared collection of logically related data designed to meet
the information needs of multiple users in an organization.

The (back-end) portion of the client/server database system

running on the server and providing database processing and

shared access functions.

Software that is used to create, maintain, and provide
controlled access to user databases.

Data compression

technique

Data couple

Data dictionary

Data flow

Data flow diagram

Data-oriented approach

A picture of the movement of data between external entities
and the processes and data stores within a system.

An overall strategy of information systems development that

focuses on the ideal organization of data rather than where

and how data are used.

Data at rest, which may take the form of many different

physical representations.

Decision support systems

(DSS)

Computer-based systems designed to help organization

members make decisions; usually composed of a database,

model base, and dialogue system.

Decision table A matrix representation of the logic of a decision, which

specifies the possible conditions for the decision and the

resulting actions.

Decision tree A graphical representation of a decision situation in which

decision points (nodes) are connected together by arcs (one

for each alternative on a decision) and terminate in ovals (the

action which is the result of all of the decisions made on the

path that leads to that oval).

Default value

Degree

Design strategy

Desk checking

DFD completeness

DFD consistency

A value a field will assume unless an explicit value is entered

for that field.

The number of entity types that participate in a relationship.

A high-level statement about the approach to developing an

information system. It includes statements on the systemâs

functionality, hardware and system software platform, and

method for acquisition.

A testing technique in which the program code is sequentially

executed manually by the reviewer.

The extent to which all necessary components of a data flow

diagram have been included and fully described.

The extent to which information contained on one level of a

set of nested data flow diagrams is also included on other

Dialogue

Dialogue diagramming

Direct installation

Discount rate

The sequence of interaction between a user and a system.

A formal method for designing and representing human-

computer dialogues using box and line diagrams.

Changing over from the old information system to a new one

by turning off the old system when the new one is turned on.

The rate of return used to compute the present value of future

cash flows.

 levels.

Diagramming tools CASE tools that support the creation of graphical

representations of various system elements such as process

flow, data relationships, and program structures.

 42

Disruptive technologies Technologies that enable the breaking of long-held business
rules that inhibit organizations from making radical business

changes.

Distributed database A single logical database that is spread across computers in

multiple locations which are connected by a data

communications link.

Documentation See External documentation, Internal documentation, System

documentation, User documentation.

Documentation generators CASE tools that enable the easy production of both technical
and user documentation in standard formats.

Domain The set of all data types and values that an attribute can
assume.

Drop-down menu A menu positioning method that places the access point of the
menu near the top line of the display; when accessed, menus

open by dropping down onto the display.

DSS generators

Economic feasibility

Efferent module

Electronic performance

support system (EPSS)

Encapsulation

Encryption

End users

End-user development

General purpose computer-based tools used to develop

specific decision support systems.

A process of identifying the financial benefits and costs

associated with a development project.

A module of a structure chart related to output from the

system.

Component of a software package or application in which

training and educational information is embedded. An EPSS

can take several forms, including a tutorial, an expert system

shell, and hypertext jumps to reference material.

The technique of hiding the internal implementation details of
an object from its external view.

The coding (or scrambling) of data so that they cannot be

read by humans.

Non-information-system professionals in an organization who

specify the business requirements for and use software

applications. End users often request new or modified

applications, test and approve applications, and may serve on

project teams as business experts.

An approach to systems development in which users who are

not computer experts satisfy their own computing needs

System documentation that includes the outcome of

structured diagramming techniques such as data flow and

entity-relationship diagrams.

through the use of high-level software and languages such as

electronic spreadsheets and relational database management

systems.

Entity instance (instance) A single occurrence of an entity type.

Entity-relationship data

model (E-R model)

Entity-

relationshipÊdiagramÊ(E-

RÊdiagram)

A detailed, logical representation of the entities, associations,

and data elements for an organization or business area.

A graphical representation of an E-R model.

Entity type A collection of entities that share common properties or
characteristics.

Environment Everything external to a system which interacts with the

system.

Event Something that takes place at a certain point in time; a
noteworthy occurrence that triggers a state transition.

Exclusive relationships A set of relationships for which an entity instance can

participate in only one of the relationships at a time.

Executive support systems

Expert systems

External documentation

External information

Feasibility

Field

File organization

Computer-based systems developed to support the

information-intensive but limited-time decision making of

executives (also referred to as executive information

systems).

Computer-based systems designed to mimic the performance
of human experts.

Information that is collected from or created for individuals
and groups external to an organization.

See Economic feasibility, Legal and contractual feasibility,

Operational feasibility, Political feasibility, Schedule

feasibility, Technical feasibility.

The smallest unit of named application data recognized by
system software.

A technique for physically arranging the records of a file on

secondary storage devices.

 44

File server A device that manages file operations and is shared by each

client PC attached to a LAN.

First normal form (1NF) A relation that contains no repeating data.

Flag A diagrammatic representation of a message passed between

two modules.

Foreign key An attribute that appears as a nonkey attribute in one relation

and as a primary key attribute (or part of a primary key) in
another relation.

Form

Form and report

generators

Form interaction

A business document that contains some pre-defined data and

may include some areas where additional data are to be filled

in. An instance of a form is typically based on one database

record.

CASE tools that support the creation of system forms and

reports in order to prototype how systems will "look and feel"
to users.

A highly intuitive human-computer interaction method

whereby data fields are formatted in a manner similar to

paper-based forms.

Formal system The official way a system works as described in
organizational documentation.

Forward recovery An approach to rebuilding a file in which one starts with an

(roll forward) earlier version of the file and either reruns prior transactions

or replaces a record with its image after each transaction.

Functional decomposition An iterative process of breaking the description of a system

 down into finer and finer detail which creates a set of charts
in which one process on a given chart is explained in greater

detail on another chart.

Functional dependency A particular relationship between two attributes. For any

relation R, attribute B is functionally dependent on attribute
A if, for every valid instance of A, that value of A uniquely

determines the value of B. The functional dependence of B on

A is represented as A > B.

Gantt chart A graphical representation of a project that shows each task

activity as a horizontal bar whose length is proportional to its

time for completion.

Hashed file organization The address for each record is determined using a hashing

algorithm.

Hashing algorithm A routine that converts a primary key value into a relative

record number (or relative file address).

Help desk A single point of contact for all user inquiries and problems

about a particular information system or for all users in a
particular department.

Homonym

Horizontal partitioning

I-CASE

Icon

Identifier

Implementation

Incremental commitment

Index

Indexed file organization

A single name that is used for two or more different attributes

(for example, the term invoice to refer to both a customer

invoice and a supplier invoice).

Distributing the rows of a table into several separate tables.

An automated systems development environment that

provides numerous tools to create diagrams, forms, and

reports; provides analysis, reporting, and code generation

facilities; and seamlessly shares and integrates data across

and between tools.

Graphical pictures that represent specific functions within a

system.

A candidate key that has been selected as the unique,
identifying characteristic for an entity type.

The sixth phase of the SDLC in which the information system

is coded, tested, installed, and supported in the organization.

A strategy in systems analysis and design in which the project

is reviewed after each phase and continuation of the project is

rejustified in each of these reviews.

A table or other data structure used to determine the location

of rows in a file that satisfy some condition.

The records are either stored sequentially or non sequentially

and an index is created that allows software to locate

individual records.

Indifferent condition In a decision table, a condition whose value does not affect

which actions are taken for two or more rules.

Informal system The way a system actually works.

Information Data that have been processed and presented in a form
suitable for human interpretation, often with the purpose of
revealing trends or patterns.

 46

Information center An organizational unit whose mission is to support users in

exploiting information technology.

Information repository Automated tools to manage and control access to

organizational business information and application portfolios
as components within a comprehensive repository.

Information systems

analysis and design

Information systems

planning (ISP)

Inheritance

Input

Inspections

Installation

Intangible benefit

Intangible cost

The complex organizational process whereby computer-based
information systems are developed and maintained.

An orderly means of assessing the information needs of an

organization and defining the systems, databases, and

technologies that will best satisfy those needs.

The property that occurs when entity types or object classes

are arranged in a hierarchy and each entity type or object

class assumes the attributes and methods of its ancestors; that

is, those higher up in the hierarchy. Inheritance allows new

but related classes to be derived from existing classes.

Whatever a system takes from its environment in order

tofulfill its purpose.

A testing technique in which participants examine program

code for predictable language-specific errors.

The organizational process of changing over from the current

information system to a new one.

A benefit derived from the creation of an information system

that cannot be easily measured in dollars or with certainty.

(6) See also Tangible benefit.

A cost associated with an information system that cannot be
easily measured in terms of dollars or with certainty.

Integration testing

Interface

Internal documentation

Internal information

The process of bringing together all of the modules that a

program comprises for testing purposes. Modules are

typically integrated in a top-down, incremental fashion.

In systems theory, the point of contact where a system meets
its environment or where subsystems meet each other.

System documentation that is part of the program source code
or is generated at compile time.

Information that is collected, generated, or consumed within
an organization.

Interrelated components Dependence of one subsystem on one or more subsystems.

JAD session leader The trained individual who plans and leads Joint Application

Design sessions.

Joint Application Design

(JAD)

A structured process in which users, managers, and analysts

work together for several days in a series of intensive

meetings to specify or review system requirements.

Key business processes The structured, measured set of activities designed to produce

a specific output for a particular customer or market.

Knowledge engineersÊ Computer professionals whose job it is to elicit knowledge

from domain experts in order to develop expert systems.
(Website)

Legal and contractual

feasibility

Level-0 diagram

Level-n diagram

Local area network (LAN)

Location transparency

Logical database model

Logical design

Logical system description

Lower CASE

The process of assessing potential legal and contractual
ramifications due to the construction of a system.

A data flow diagram that represents a systems major
processes, data flows, and data stores at a high level of detail.

A DFD that is the result of n nested decompositions of a
series of subprocesses from a process on a level-0 diagram.

The cabling, hardware, and software used to connect

workstations, computers, and file servers located in a

confined geographical area (typically within one building or

campus).

A design goal for a distributed database which says that a

user (or user program) requesting data need not know at

which site those data are located.

A description of data using a notation that corresponds to an
organization of data used by database management systems.

The fourth phase of the SDLC in which all functional features

of the system chosen for development in analysis are

described independently of any computer platform.

Description of a system that focuses on the systems function

and purpose without regard to how the system will be

physically implemented.

CASE tools designed to support the implementation and

maintenance phases of the systems development life cycle.

 48

Maintainability The ease with which software can be understood, corrected,

adapted, and enhanced.

Maintenance The final phase of the SDLC in which an information system

is systematically repaired and improved; or changes made to
a system to fix or enhance its functionality.

Management information

systems (MIS)

Mean time between failures

(MTBF)

Menu interaction

Method

Middleware

Mission statement

Modularity

Module

Computer-based systems designed to provide standard reports

for managers about transaction data.

A measurement of error occurrences that can be tracked over

time to indicate the quality of a system.

A human-computer interaction method where a list of system

options is provided and a specific command is invoked by

user selection of a menu option.

The implementation of an operation.

A combination of hardware, software, and communication

technologies that bring together data management,

presentation, and analysis into a three-tiered client/server

environment.

A statement that makes it clear what business a company is
in.

Dividing a system up into chunks or modules of a relatively

uniform size.

A self-contained component of a system, defined by function.

Shows that an object is an instance of more than one class

Multivalued attribute An attribute that may take on more than one value for each

entity instance.

Natural language

interaction

A human-computer interaction method where inputs to and

outputs from a computer-based application are in a

conventional speaking language such as English.

Normal form A state of a relation that can be determined by applying
simple rules regarding dependencies to that relation.

Normalization The process of converting com-plex data structures

into simple, stable data structures.

Null value A special field value, distinct from 0, blank, or any other

value, that indicates that the value for the field is missing or

otherwise unknown.

Object An entity that has a well-defined role in the application

domain and has state, behavior, and identity.

Object-based interaction A human-computer interaction method where symbols are

used to represent commands or functions.

Object class (class) A set of objects that share a common structure and a common

behavior.

Object diagram

Object-oriented analysis

and design (OOAD)

Objective statements

On-line processing

One-time cost

Open-ended questions

Open system

Operation

Operational feasibility

Output

Outsourcing

Overriding

A graph of instances that are compatible with a given class

diagram.

Systems development methodologies and techniques based
on objects rather than data or processes.

A series of statements that express organizations qualitative
and quantitative goals for reaching a desired future position.

The collection and delivery of the most recent available
information, typically through an on-line workstation. (14)

A cost associated with project start-up and development, or

system start-up. (6)

Questions in interviews and on questionnaires that have no

prespecified answers.

A system that interacts freely with its environment, taking

input and returning output.

A function or a service that is provided by all the instances of

a class.

The process of assessing the degree to which a proposed

system solves business problems or takes advantage of

business opportunities.

Whatever a system returns to its environment in order to

fulfill its purpose.

The practice of turning over responsibility of some to all of

an organizationâs information systems applications and

operations to an outside firm.

The process of replacing a method inherited from a super

class by a more specific implementation of that method in a

 50

subclass.

Package A set of cohesive, tightly coupled classes representing a
subsystem.

Page The amount of data read or written in one secondary memory
(disk) input or output operation. For I/O with a magnetic tape,
the equivalent term is record block.

Parallel installation Running the old information system and the new one at the

same time until management decides the old system can be

turned off.

Partial functional
dependency

Participatory Design (PD)

Perfective maintenance

PERT chart

Phased installation

Physical design

Physical file

Physical record

A dependency in which one or more nonkey attributes are

functionally dependent on part, but not all, of the primary

key.

A systems development approach that originated in Northern

Europe in which users and the improvement in their work

lives are the central focus.

Changes made to a system to add new features or to improve

performance.

A diagram that depicts project activities and their inter-

relationships. PERT stands for Program Evaluation Review

Technique.

Changing from the old information system to the new one

incrementally, starting with one or a few functional

components and then gradually extending the installation to

cover the whole new system.

The fifth phase of the SDLC in which the logical

specifications of the system from logical design are

transformed into technology-specific details from which all

programming and system construction can be accomplished.

A named set of contiguous records.

A group of fields stored in adjacent memory locations and
retrieved together as a unit.

Physical system description Description of a system that focuses on how the system will

be materially constructed.

Picture (or template) A pattern of codes that restricts the width and possible values

for each position of a field.

Pointer A field of data that can be used to locate a related field or

record of data.

Political feasibility The process of evaluating how key stakeholders within the

organization view the proposed system.

Polymorphism The same operation may apply to two or more classes in

different ways.

Pop-up menu A menu positioning method that places a menu near the
current cursor position.

Present value The current value of a future cash flow.

Preventive maintenance Changes made to a system to avoid possible future problems.

Primitive DFD

Process

Process-oriented approach

The lowest level of decomposition for a data flow diagram.

The work or actions performed on data so that they are
transformed, stored, or distributed.

An overall strategy to information systems development that

focuses on how and when data are moved through and

changed by an information system.

Processing logic The steps by which data are transformed or moved and a

description of the events that trigger these steps.

Project A planned undertaking of related activities to reach an

objective that has a beginning and an end.

 Project close-down The final phase of the project management process that
focuses on bringing a project to an end.

 Project execution The third phase of the project management process in which

 the plans created in the prior phases (project initiation and
planning) are put into action.

Project identification and

selection

Project initiation

Project initiation and

planning

The first phase of the SDLC in which an organizations total

information system needs are identified, analyzed, prioritized,

and arranged.

The first phase of the project management process in which

activities are performed to assess the size, scope, and

complexity of the project and to establish procedures to

support later project activities.

The second phase of the SDLC in which a potential
information systems project is explained and an argument for

 52

continuing or not continuing with the project is presented; a

detailed plan is also developed for conducting the remaining

phases of the SDLC for the proposed system.

Project management A controlled process of initiating, planning, executing, and

closing down a project.

Project manager An individual with a diverse set of skills--management,

leadership, technical, conflict management, and customer

relationship--who is responsible for initiating, planning,

executing, and closing down a project.

Project planning The second phase of the project management process which

focuses on defining clear, discrete activities and the work

needed to complete each activity within a single project.

Project workbook

Prototyping

An on-line or hard copy repository for all project

correspondence, inputs, outputs, deliverables, procedures, and

standards that is used for performing project audits,

orientation of new team members, communication with

management and customers, scoping future projects, and

performing post-project reviews.

An iterative process of systems development in which

requirements are converted to a working system which is
continually revised through close work between an analyst

and users.

Pseudocode A method for representing the instructions in a module with

language very similar to computer programming code.

Purpose The overall goal or function of a system.

Query operation An operation that accesses the state of an object but does not

alter the state.

Rapid Application

Development (RAD)

Record partitioning

Recurring cost

Recursive foreign key

Systems development methodology created to radically

decrease the time needed to design and implement

information systems. RAD relies on extensive user

involvement, Joint Application Design sessions, prototyping,

integrated CASE tools, and code generators.

The process of splitting logical records into separate physical
segments based on affinity of use.

A cost resulting from the ongoing evolution and use of a

system.

A foreign key in a relation that references the primary key

values of that same relation.

Reengineering Automated tools that read program source code as input,
perform an analysis of the programs data and logic, and then

automatically, or interactively with a systems analyst, alter an

existing system in an effort to improve its quality or

performance.

Referential integrity An integrity constraint specifying that the value (or existence)

of an attribute in one relation depends on the value (or
existence) of an attribute in the same or another relation.

Relation A named, two-dimensional table of data. Each relation

consists of a set of named columns and an arbitrary number

of unnamed rows.

Relational database model A data model that represents data in the form of tables or

relations.

Relationship An association between the instances of one or more entity

types that is of interest to the organization.

Repeating group

Report

Repository

Resource

Reusability

Reverse engineering

A set of two or more multi valued attributes that are logically

related.

A business document that contains only pre-defined data; that

is, it is a passive document used solely for reading or

viewing. A report typically contains data from many

unrelated records or transactions.

A centralized database that contains all diagrams, form and

report definitions, data structure, data definitions, process

flows and logic, and definitions of other organizational and

system components; it provides a set of mechanisms and

structures to achieve seamless data-to-tool and data-to-data

integration.

Any person, group of people, piece of equipment, or material
used in accomplishing an activity.

The ability to design software modules in a manner so that

they can be used again and again in different systems without

significant modification.

Automated tools that read program source code as input and

create graphical and textual representations of program
design-level information such as program control structures,

data structures, logical flow, and data flow.

 54

Rules That part of a decision table that specifies which actions are

to be followed for a given set of conditions.

Schedule feasibility The process of assessing the degree to which the potential

timeframe and completion dates for all major activities within

a project meet organizational deadlines and constraints for

affecting change.

Scribe The person who makes detailed notes of the happenings at a
Joint Application Design session.

Second normal form (2NF) A relation is in second normal form if it is in first normal

 form and every non key attribute is fully functionally
dependent on the primary key. Thus no non key attribute is

functionally dependent on part (but not all) of the primary

key.

Secondary key One or a combination of fields for which more than one

record may have the same combination of values.

Sequence diagram Depicts the interactions among objects during a certain period

of time.

Sequential file organization The records in the file are stored in sequence according to a

primary key value.

Single location installation Trying out a new information system at one site and using the
experience to decide if and how the new system should be

deployed throughout the organization.

Slack time The amount of time that an activity can be delayed without

delaying the project.

Smart card A thin plastic card the size of a credit card with an embedded
microprocessor and memory.

Source/sink The origin and/or destination of data, sometimes referred to

as external entities.

Stakeholder A person who has an interest in an existing or new

information system. A stakeholder is someone who is

involved in the development of a system, in the use of a

system, or someone who has authority over the parts of the

organization affected by the system.

State Encompasses an objects properties (attributes and
relationships) and the values those properties have.

State diagram A model of the states of an object and the events that cause

the object to change from one state to another.

State transition Changes in the attributes of an object or in the links an object

has with other objects.

Statement of Work (SOW) Document prepared for the customer during project initiation

and planning that describes what the project will deliver and

outlines generally at a high level all work required to

complete the project.

Structure chart Hierarchical diagram that shows how an information system

is organized.

Structured English Modified form of the English language used to specify the

logic of information system processes. Although there is no

single standard, Structured English typically relies on action

verbs and noun phrases and contains no adjectives or adverbs.

Stub testing A technique used in testing modules, especially where

modules are written and tested in a top-down fashion, where a

few lines of code are used to substitute for subordinate

modules.

Support Providing ongoing educational and problem solving

assistance to information system users. For in-house
developed systems, support materials and jobs will have to be
prepared or designed as part of the implementation process.

Synchronous message A type of message in which the caller has to wait for the

receiving object to finish executing the called operation

before it can resume execution itself.

Synonyms Two different names that are used to refer to the same data
item (for example, car and automobile).

System An inter-related set of components, with an identifiable

boundary, working together for some purpose.

System documentation Detailed information about a systems design specifications,

its internal workings, and its functionality.

System librarian A person responsible for controlling the checking-out and

checking-in of baseline modules for a system when a system

is being developed or maintained.

System testing The bringing together of all the programs that a system

comprises for testing purposes. Programs are typically

integrated in a top-down, incremental fashion.

 56

Systems analyst The organizational role most responsible for the analysis and

design of information systems.

Systems development life

cycle (SDLC)

Systems development

methodology

The traditional methodology used to develop, maintain, and
replace information systems.

A standard process followed in an organization to conduct all

the steps necessary to analyze, design, implement, and

maintain information systems.

Tangible benefit A benefit derived from the creation of an information system

that can be measured in dollars and with certainty.

Tangible cost A cost associated with an information system that can be
measured in terms of dollars and with certainty.

Technical feasibility A process of assessing the development organizations ability

to construct a proposed system.

Ternary relationship A simultaneous relationship among instances of three entity

types.

Third normal form (3NF) A relation is in third normal form if it is in second normal

form and no transitive dependencies exist.

Three-tiered client/server Advanced client/server architectures in which there are three

logical and distinct applications--data management,

presentation, and analysis--which are combined to create a

single information system.

Top-down planning A generic information systems planning methodology that

attempts to gain a broad understanding of the information

system needs of the entire organization.

Transaction analysis The process of turning data flow diagrams of a transaction-

centered system into structure charts.

Transaction-centered
system

Transaction processing
systems (TPS)

An information system that has as its focus the dispatch of

data to their appropriate locations for processing.

Computer-based versions of manual organization systems

dedicated to handling the organizations transactions; e.g.,

payroll.

Transactions Individual, simple events in the life of an organization that
contain data about organizational activity.

Transform analysis The process of turning data flow diagrams of a transform-centered

system into structure charts.

Transform-centered system An information system that has as its focus the derivation of

new information from existing data.

Transitive dependency A functional dependency between two (or more) non key

attributes in a relation.

Triggering operation

(trigger)

An assertion or rule that governs the validity of data

manipulation operations such as insert, update, and delete.

Turnaround document Information that is delivered to an external customer as an

output that can be returned to provide new information as an
input to an information system.

Unary relationship

(recursive relationship)

Upper CASE

Usability

Use case

Use-case diagram

User documentation

Value chain analysis

Vertical partitioning

View

A relationship between the instances of one entity type.

Method in which each module is tested alone in an attempt to

discover any errors in its code.

An operation that alters the state of an object.

CASE tools designed to support information planning and the

project identification and selection, project initiation and

planning, analysis, and design phases of the systems

development life cycle.

An overall evaluation of how a system performs in supporting
a particular user for a particular task.

A complete sequence of related actions initiated by an actor,
it represents a specific way of using the system.

A diagram that depicts the use cases and actors for a system.

Written or other visual information about an application
system, how it works, and how to use it.

The process of analyzing an organizations activities to

determine where value is added to products and/or services

and the cost are incurred for doing so; usually also includes a

comparison with the activities, added value, and costs of

other organizations for the purpose of making improvements

in the organizations operations and performance.

Distributing the columns of a table into several separate

tables.

A subset of the database that is presented to one or more
users.

Unit testing

Update operation

 58

Walkthrough A peer group review of any product created during the

systems development process. Also called structured

walkthrough.

Well-structured relation A relation that contains a minimum amount of redundancy

and allows users to insert, modify, and delete the rows in a

table without errors or inconsistencies.

Work breakdown structure The process of dividing the project into manageable tasks and

logically ordering them to ensure a smooth evolution between

tasks.

CASE STUDY

CASE 1: A Railway reservation system functions as follows:

The passenger fills in a reservation form giving his/her particulars and source and

destination details. The counter clerk ensures whether seats is available or not from

the reservation register. if seat is not available ,the form is returned back to the

passenger. Otherwise the clerk will prepare the tickets, compute the charges for the

tickets and a booking statement is composed. One copy of the booking statement is

retained as office copy, one is given to the train conductor and one copy is pasted on

the compartment. A cash statement is prepared at the end of each shift.

PREPARE A DATAFLOW DIAGRAM FOR THE ABOVE SYSTEM

SOLUTION:

Reservation

Form

Ticket

Booking Rates

Ticketing
Booking Statement

Reservation

Details
Enquiry

Cash Statement

Reservation Register Cash register

Rates

Conductor

Passenger

Context Diagram for Railway Reservation System

First Level Data Flow Diagram

 60

Reservation Form returned if no seat available

Form

Enquiry

1.1

Reservation Details

Update reservation Details

Enquiry

Process

Reservation Particular

Ticket

Rates
Booking Rates

 1.2

Compute

amount and

Prepare ticket

Ticket and Cash Details

Cash Statement

1.3
Booking

Statement

preparation

Booking statement

Passenger

Cash

Register

Conductor

Reservation

Register

