Biyani's Think Tank
Concept Based Notes

Software Engineering
BCA Il Sem.

Ms. Neha Tiwari
Asst. Professor (Dept. of IT)
Biyani Girls College, Jaipur

BIYANI

Where you can trust

Published by :
Think Tanks
Biyani Group of Colleges

Concept & Copyright :

© Biyani Shikshan Samiti

Sector-3, Vidhyadhar Nagar,

Jaipur-302 023 (Rajasthan)

Ph:0141-2338371, 2338591-95 Fax : 0141-2338007
E-mail : acad@biyanicolleges.org

Website :www.gurukpo.com; www.biyanicolleges.org

ISBN : 978-93-83462-35-3

Edition: 2025

While every effort is taken to avoid errors or omissions in this Publication, any
mistake or omission that may have crept in is not intentional. It may be taken note of
that neither the publisher nor the author will be responsible for any damage or loss of
any kind arising to anyone in any manner on account of such errors and omissions.

Leaser Type Setted by :
Biyani College Printing Department

mailto:acad@biyanicolleges.org
http://www.gurukpo.com/
http://www.biyanicolleges.org/

Preface

I am glad to present this book, especially designed to serve the needs

of the students. The book has been written keeping in mind the general
weakness in understanding the fundamental concepts of the topics. The
book is self- explanatory and adopts the “Teach Yourself” style. It is based
on question- answer pattern. The language of book is quite easy and
understandable basedon scientific approach.

Any further improvement in the contents of the book by making
corrections, omission and inclusion is keen to be achieved based on
suggestions from the readers for which the author shall be obliged.

| acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr.
Sanjay Biyani, Director (Acad.) Biyani Group of Colleges, who are the
backbones and main concept provider and also have been constant source of
motivation throughout this Endeavour. They played an active role in
coordinating the various stages of this Endeavour and spearheaded the
publishing work.

| look forward to receiving valuable suggestions from professors of
various educational institutions, other faculty members and students for
improvement of the quality of the book. The reader may feel free to send in
their comments and suggestions to the under mentioned address.

Author

Syllabus

Unit-I

Software Engineering Fundamentals: Software, Problem Domain, Software Engineering Challenges,
Software Processes (processes, projects & products, component), Software Requirement Analysis &
Specification. Software Development Process Models: Waterfall Model, Prototyping, Iterative Enhancement
Model, Spiral Model. Introduction to Agile Model: Principles, Steps, Various Agile Process Models.

Unit-11

Software Project Planning: Cost Estimation- Uncertainties in Cost Estimation, Building Cost Estimation
Models, On Size Estimation, COCOMO Model. Project Scheduling: Average Duration Estimation, Project
Scheduling & Milestones. Quality Assurance Plans: Verification & Validation, Inspection & Reviews.
Unit-111

Design Engineering: Design Process & Design Quality, Design Concepts (abstraction, architecture,
modularity, functional independence, refinement, and design classes), The Design Model (data design
elements, architectural design elements, interface design elements, component-level design elements,
deployment-level design elements). Testing Strategies & Tactics: A strategic approach to software testing,
Strategic issues, Software testing fundamentals, Test characteristics, Test Strategies for conventional
software: Unit Testing, Integration testing, Validation Testing, System testing, Black-Box testing, White Box
testing.

Unit-1V

Software Reliability: Risk Management,Measures of Reliability & Awvailability, Software Safety.
Maintenance and Reengineering: Introduction to: Software Maintenance, Software Supportability,

Reengineering, Reverse Engineering, Restructuring, and Forward Engineering.

Chapter-1

Introduction to Software Engineering

Q1. What is Software Engineering?

The term Software engineering is the product of two words, software, and engineering.
The software is a collection of integrated programs. Software subsists of carefully-organized
instructions and code written by developers on any of various particular computer languages.
Computer programs and related documentation such as requirements, design models and user
manuals. Engineering is the application of scientific and practical knowledge to invent, design, build,
maintain, and improve frameworks, processes, etc.

Updates

Software
Product

Code Design

Requirements

System
Analysis

Q2. What are the needs of Software Engineering?

The necessity of software engineering appears because of a higher rate of progress in user requirements
and the environment on which the program is working.

o Huge Programming: It is simpler to manufacture a wall than to a house or building, similarly,
as the measure of programming become extensive engineering has to step to give it a scientific
process.

o Adaptability: If the software procedure were not based on scientific and engineering ideas, it
would be simpler to re-create new software than to scale an existing one.

o Cost: As the hardware industry has demonstrated its skills and huge manufacturing has let down
the cost of computer and electronic hardware. But the cost of programming remains high if the
proper process is not adapted.

o Dynamic Nature: The continually growing and adapting nature of programming hugely depends
upon the environment in which the client works. If the quality of the software is continually
changing, new upgrades need to be done in the existing one.

o Quality Management: Better procedure of software development provides a better and quality
software product.

Q3. What are the importances of Software Engineering?

éeaum Complexity | Minimize Software cost
A y

g

Importance of Software Handling Big Project

The importance of Software engineering is as follows:

1. Reduces complexity: Big software is always complicated and challenging to progress. Software
engineering has a great solution to reduce the complication of any project. Software engineering
divides big problems into various small issues. And then start solving each small issue one by
one. All these small problems are solved independently to each other.

2. To minimize software cost: Software needs a lot of hardwork and software engineers are highly
paid experts. A lot of manpower is required to develop software with a large number of codes.
But in software engineering, programmers project everything and decrease all those things that
are not needed. In turn, the cost for software productions becomes less as compared to any
software that does not use software engineering method.

3. To decrease time: Anything that is not made according to the project always wastes time. And if
you are making great software, then you may need to run many codes to get the definitive
running code. This is a very time-consuming procedure, and if it is not well handled, then this
can take a lot of time. So if you are making your software according to the software engineering
method, then it will decrease a lot of time.

4. Handling big projects: Big projects are not done in a couple of days, and they need lots of
patience, planning, and management. And to invest six and seven months of any company, it
requires heaps of planning, direction, testing, and maintenance. No one can say that he has given
four months of a company to the task, and the project is still in its first stage. Because the
company has provided many resources to the plan and it should be completed. So to handle a big
project without any problem, the company has to go for a software engineering method.

5. Reliable software: Software should be secure, means if you have delivered the software, then it
should work for at least its given time or subscription. And if any bugs come in the software, the
company is responsible for solving all these bugs. Because in software engineering, testing and
maintenance are given, so there is no worry of its reliability.

6. Effectiveness: Effectiveness comes if anything has made according to the standards. Software
standards are the big target of companies to make it more effective. So Software becomes more
effective in the act with the help of software engineering.

Q4. What are the Software Processes?

The term software specifies to the set of computer programs, procedures and associated documents
(Flowcharts, manuals, etc.) that describe the program and how they are to be used.

A software process is the set of activities and associated outcome that produce a software product.
Software engineers mostly carry out these activities. These are four key process activities, which are
common to all software processes. These activities are:

1. Software specifications: The functionality of the software and constraints on its operation must
be defined.

2. Software development: The software to meet the requirement must be produced.

3. Software validation: The software must be validated to ensure that it does what the customer
wants.
4. Software evolution: The software must evolve to meet changing client needs.

Chapter 2

Software Development Life cycle

Q1.Describe the term of Software Development Life Cycle.

A software life cycle model (also termed process model) is a pictorial and diagrammatic representation
of the software life cycle. A life cycle model represents all the methods required to make a software
product transit through its life cycle stages. It also captures the structure in which these methods are to
be undertaken.

In other words, a life cycle model maps the various activities performed on a software product from its
inception to retirement. Different life cycle models may plan the necessary development activities to
phases in different ways. Thus, no element which life cycle model is followed, the essential activities are
contained in all life cycle models though the action may be carried out in distinct orders in different life
cycle models. During any life cycle stage, more than one activity may also be carried out.

10 %W&J¢ EHhicrede SHersede

SDLC Cycle

SDLC Cycle represents the process of developing software. SDLC framework includes the following
steps:

(Software Development
life Cycle)

The stages of SDLC are as follows:

Stagel: Planning and requirement analysis

Requirement Analysis is the most important and necessary stage in SDLC.The senior members of the
team perform it with inputs from all the stakeholders and domain experts or SMEs in the industry.
Planning for the quality assurance requirements and identifications of the risks associated with the
projects is also done at this stage.

Business analyst and Project organizer set up a meeting with the client to gather all the data like what
the customer wants to build, who will be the end user, what is the objective of the product. Before
creating a product, a core understanding or knowledge of the product is very necessary.

For Example, A client wants to have an application which concerns money transactions. In this method,
the requirement has to be precise like what kind of operations will be done, how it will be done, in
which currency it will be done, etc.Once the required function is done, an analysis is complete with
auditing the feasibility of the growth of a product. In case of any ambiguity, a signal is set up for further
discussion.

Once the requirement is understood, the SRS (Software Requirement Specification) document is created.
The developers should thoroughly follow this document and also should be reviewed by the customer
for future reference.

Stage2: Defining Requirements

Once the requirement analysis is done, the next stage is to certainly represent and document the software
requirements and get them accepted from the project stakeholders.This is accomplished through "SRS"-
Software Requirement Specification document which contains all the product requirements to be
constructed and developed during the project life cycle.

Stage3: Designing the Software

The next phase is about to bring down all the knowledge of requirements, analysis, and design of the
software project. This phase is the product of the last two, like inputs from the customer and requirement
gathering.

Stage4: Developing the project

In this phase of SDLC, the actual development begins, and the programming is built. The
implementation of design begins concerning writing code. Developers have to follow the coding
guidelines described by their management and programming tools like compilers, interpreters,
debuggers, etc. are used to develop and implement the code.

Stage5: Testing

After the code is generated, it is tested against the requirements to make sure that the products are
solving the needs addressed and gathered during the requirements stage.During this stage, unit testing,
integration testing, system testing, acceptance testing are done.

Stage6: Deployment

Once the software is certified, and no bugs or errors are stated, then it is deployed.Then based on the
assessment, the software may be released as it is or with suggested enhancement in the object
segment.After the software is deployed, then its maintenance begins.

Stage7: Maintenance

Once when the client starts using the developed systems, then the real issues come up and requirements
to be solved from time to time.This procedure where the care is taken for the developed product is
known as maintenance.

Q2. Describe the Waterfall Model / Linear Sequential Model.

Ans.: Sometimes called the classic life cycle or the linear sequential model, the waterfall model is
a systematic, sequential approach to software development in whichdevelopment is seen as flowing
downwards (like a waterfall) that begins at the system level and progresses through analysis,
design, coding, testing and support. To follow the waterfall model, one proceeds from one phase to
the next in a sequential manner. For example, one first completes "requirements specification".
When the requirements are fully completed, one proceeds to design. The software is designed (on
paper) and this design should be a plan for implementing the requirements given. When the design

is fully completed, an implementation of that design, i.e. coding of the design is made by
programmers. After the implementation phases are complete, the software product is tested and
debugged; any faults introduced in earlier phases are removed here. Then the software product is
installed, and later maintained to add any new functions that the user needs and remove bugs. Thus
in a waterfall model, we can move to the next step only when the previous step is completed and
removed of all errors. There is no jumping back and forth or overlap between the steps in a
waterfall model.

Information

Modeling \
‘\ Requirements

Analysis \'
\ Design

K Code

Generation \
\ Testing \

‘\ Delivery &

Support

The model consists of six distinct stages, namely :

@ In the Information Modelling phase
(a) Work begins by gathering information related to the existing system. This will
consists of all items consisting of hardware, people, databases etc.

2 In the requirements analysis phase
(@) The problem is specified along with the desired objectives (goals).

(b) The constraints are identified.

Software Engineering 13

(3)

(4)

(5)

(6)

(a) All information about the functions, behaviour, and performance
are documented and checked by the customers.

In the design phase, all inputs, computations and outputs of the system should
be converted into a software model so that it can be coded by programmers.
The hardware requirements are also determined at this stage along with a
picture of the overall system architecture.

In the code generation phase, the design has to be translated into a machine-
readable form using any of the programming languages available that is
suitable for the project.

In the testing phase stage
(a) Once code is generated, testing begins.

(b) It focuses on all the statements of the software and removes all
errors.

(0 It ensures that proper input will produce actual results.

(d) Detailed documentation from the design phase can significantlyreduce the

coding effort.

The delivery and support phase consists of delivering the final product to
the customer and then taking care of the maintenance of the product. In
this phase the software is updated to :

(a) Meet the changing customer needs

(b) Adapted to accommodate changes in the external environment
() Correct errors that were not previously known in the testing phases
(d) Enhancing the efficiency of the software

Q3.Explain the Prototyping Process Model.

Ans.: The prototyping model begins with the requirements gathering. The developer and the
customer meet and define the objectives for the software, identify the needs, etc. A ,, quick design*
is then created. This design focuses on those aspects of the software that will be visible to the
customer. It then leads to the construction of a prototype. The prototype is then checked by the
customer and any modifications or changes that are required are made to the prototype. Looping
takes place in this process and better versions of the prototype are created. These are continuously
shown to the user so that any new changes can be updated in the prototype. This process continues
till the user is satisfied with the system. Once a user is satisfied, the prototype is converted to the

actual system with all considerations for quality and security.

The prototype is considered as the ,,first system®. It is advantageous because both
the customers and the developers get a feel of the actual system. But there are
certain problems with the prototyping model too.

(1)

The prototype is usually created without taking into consideration overall
software quality.

(2) When the customer sees a working model in the form of a prototype,and

then is told that the actual software is not created, the customer can get
irritated.

(3) Since the prototype is to be created quickly, the developer will use
whatever choices he has at that particular time (eg, he may not know a
good programming language, but later may learn. He then cannot change
the whole system for the new programming language). Thus the prototype
may be created with less-than-ideal choices.

Q4. Describe the Rapid Application Development Model. State itsdisadvantages.

Ans.: Rapid Application Development (RAD) is an incremental software development
process model that focuses on a very short development cycle. The RAD model is
a ,,high-speed version of the linear sequential model. It enables a development
team to create a fully functional system within a very short time period (e.g. 60 to
90 days).

Business Modeling : The information flow among business functions is
modeled in a way that answers the following questions :

What information drives the business process?
What information is generated?
Who generates it?

Where does the information go?
Who processes it?

Data Modeling : It gives all the details about what data is to be used in the project.
All the information found in the business modeling phase is refined into a set of
data objects and the characteristics and the relationships between these objects are
defined.

Process Modeling : Here all the processes are defined that are needed to usethe
data objects to create the system. Processing descriptions are created for adding,
modifying, deleting, or retrieving a data object.

Application Generation : RAD makes use of the fourth generation techniques and
tools like VB, VC++, Delphi etc rather than creating software using conventional
third generation programming languages. The RAD reuses existing program
components (when possible) or creates reusable components (when necessary). In
all cases, automated tools (CASE tools) are used to facilitate construction of the
software.

Testing and Turnover : Since the RAD process emphasizes reuse, many of the
program components have already been tested. This minimizes the testing and
development time.

If a business application can be divided into modules, so that each major function
can be completed within the development cycle, then it is a candidate for the
RAD model. In this case, each team can be assigned a model, which is then
integrated to form a whole.

Disadvantages :

Software Engineering 15
- For Large projects, RAD requires sufficient resources to create the right
number of RAD teams.

If a system cannot be properly divided into modules, building components for
RAD will be problematic

RAD is not appropriate when technical risks are high, e.g. this occurs when anew
application makes heavy use of new technology.

Q5. Explain the Spiral Model. What are the advantages of this model?

Ans.: The spiral model, combines the iterative nature of prototyping with the controlled and
systematic aspects of the waterfall model, therein providing the potential for rapid
development of incremental versions of the software. In this model the software is
developed in a series of incremental releases with the early stages being either paper
models or prototypes. Later iterations become increasingly more complete versions of the
product.

Flanning

Risk Analysis

Customer
Communication -

Engineering

Cudomer

Bvaluation Condruction & Release

As illustrated, the model is divided into a number of task regions.
These regions are :

(1) The customer communication task — to establish effective communication
between developer and customer.

(2) The planning task — to define resources, time lines and other project related
information..

(3) The risk analysis task —to assess both technical and management risks.

(4) The engineering task — to build one or more representations (prototypes) of
the application.

(5) The construction and release task — to construct, test, install and provide
user support (e.g., documentation and training).

(6) The customer evaluation task — to obtain customer feedback based on the
evaluation of the software representation created during the engineering stage
and implemented during the install stage.

The evolutionary process begins at the centre position and moves in a clockwise
direction. Each traversal of the spiral typically results in a deliverable. For
example, the first and second spiral traversals may result in the production of a
product specification and a prototype, respectively. Subsequent traversals may then
produce more sophisticated versions of the software.

An important distinction between the spiral model and other software models is
the explicit consideration of risk. There are no fixed phases such as specification
or design phases in the model and it encompasses other process models. For example,
prototyping may be used in one spiral to resolve requirement uncertainties and hence
reduce risks. This may then be followed by a conventional waterfall development.

Advantages of the Spiral Model :

[The spiral model is a realistic approach to the development of large- scale
software products because the software evolves as the process progresses. In
addition, the developer and the client better understand and react to risks at
each evolutionary level.

[The model uses prototyping as a risk reduction mechanism and allows for
the development of prototypes at any stage of the evolutionary
development.

[It maintains a systematic stepwise approach, like the classic life cycle model,
but incorporates it into an iterative framework that more reflect the real world.

If employed correctly, this model should reduce risks before they become
problematic, as consideration of technical risks are considered at all stages.

Q6. What is Feasibility? Describe the different types of Feasibility.

Ans.: Feasibility is the determination of whether or not a project is worth doing. The
process followed in making this determination is called feasibility study. A
feasibility study is carried out to select the best system that meets performance
requirements. When conducting feasibility study, an analyst can consider 7 types of
feasibility:

L Technical Feasibility : It is concerned with specifying the equipment and the
computer system that will satisfy and support the proposed user
requirements. Here we need to consider the configuration of the system which
tells the analyst how many work stations are required, how the units are
interconnected so that they can operate and communicate smoothly.

[Operation Feasibility : It is related to human organizational aspects. The
points to be considered here are — what changes will be brought with the
system?, what new skills will be required?, do the existing staff members
have these skills and can they be trained?

[Economic Feasibility : It is the most frequently used technique for
evaluating a proposed system. It is also called Cost/Benefit Analysis. It is
used to determine the benefits and savings that are expected from the
proposed system and compare them with the costs. If benefits are more
than the cost, the proposed system is given an OK.

Software Engineering 17
[Social Feasibility : It is a determination of whether the proposed system
will be acceptable to the people or not. It finds out the probability of the
project being accepted by the group of people who are directly affected by
the changed system.

[Management Feasibility : It is a determination of whether the proposed
system is acceptable to the management of the organization. The project may
be rejected, if the management does not accept the proposed system.

[Legal Feasibility : It is a determination of whether the proposed project is
under legal obligation of known Acts, Statutes, etc.

[Time Feasibility : It is a determination of whether the project will be
completed within a specified time period. If the project takes too much time, it
is likely to be rejected.

Chapter-3

Software Requirement Analysis

Q1. What is Software Requirement Specification - [SRS]?

Ans A Software requirements specification (SRS) is a description of a software system to
be developed. It lays out functional and non-functional requirements, and may
include a set of use cases that describe user interactions that the software must
provide.

Software requirements specification establishes the basis for an agreement between
customers and contractors or suppliers (in market-driven projects, these roles may be
played by the marketing and development divisions) onwhat the software product is
to do as well as what it is not expected to do. Software requirements specification
permits a rigorous assessment of requirements before design can begin and reduces
later redesign. It should also provide a realistic basis for estimating product costs,
risks, and schedules. Used appropriately, software requirements specifications
can help prevent software project failure

A software requirements specification (SRS) is a document that captures

complete description about how the system is expected to perform. It is usually
signed off at the end of requirements engineering phase.

Quialities of SRS:

e Correct
e Unambiguous
o« Complete

o Consistent

¢ Ranked for importance and/or stability
o Verifiable

« Modifiable

e Traceable

Types of Requirements:

The below diagram depicts the various types of requirements that are capturedduring
SRS.

Functional
Resource Performance

"‘

Operational Interface

Specification
Types ‘
Quality ‘v Maintainability

Safety Reliability

Q2. What are the properties of a good SRS document.

Ans. Properties of a good SRS document. The essential properties of a good SRS document are the
following:

Concise: The SRS report should be concise and at the same time, unambiguous, consistent, and
complete. Verbose and irrelevant descriptions decrease readability and also increase error possibilities.

Structured: It should be well-structured. A well-structured document is simple to understand and
modify. In practice, the SRS document undergoes several revisions to cope up with the user
requirements. Often, user requirements evolve over a period of time. Therefore, to make the
modifications to the SRS document easy;, it is vital to make the report well-structured.

Black-box view: It should only define what the system should do and refrain from stating how to do
these. This means that the SRS document should define the external behavior of the system and not
discuss the implementation issues. The SRS report should view the system to be developed as a black
box and should define the externally visible behavior of the system. For this reason, the SRS report is
also known as the black-box specification of a system.

Conceptual integrity: It should show conceptual integrity so that the reader can merely understand it.
Response to undesired events: It should characterize acceptable responses to unwanted events. These are
called system response to exceptional conditions.

Software Engineering 19
Verifiable: All requirements of the system, as documented in the SRS document, should be correct.
This means that it should be possible to decide whether or not requirements have been met in an
implementation.

Q3. Describe Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a
system. A neat and clear DFD can depict the right amount of the system requirement graphically. It can
be manual, automated, or a combination of both.

It shows how data enters and leaves the system, what changes the information, and where data is stored.

The objective of a DFD is to show the scope and boundaries of a system as a whole. It may be used as a
communication tool between a system analyst and any person who plays a part in the order that acts as a
starting point for redesigning a system. The DFD is also called as a data flow graph or bubble chart.

The following observations about DFDs are essential:

1. All names should be unique. This makes it easier to refer to elements in the DFD.

2. Remember that DFD is not a flow chart. Arrows is a flow chart that represents the order of events;
arrows in DFD represents flowing data. A DFD does not involve any order of events.

3. Suppress logical decisions. If we ever have the urge to draw a diamond-shaped box in a DFD,
suppress that urge! A diamond-shaped box is used in flow charts to represents decision points with

multiple exists paths of which the only one is taken. This implies an ordering of events, which makes
no sense in a DFD.

4. Do not become bogged down with details. Defer error conditions and error handling until the end of

the analysis.
Symbol Name Function
/\ Used to Connect Processes to each
Data flow , other, to sources or Sinks; te arrow
head indicates direction of data flow.
Picicass Perfroms Some transformation
of Input data to yield output data.
Source of Sink A Source of System inputs
(External Entity) or Sink of System outputs.
Data Store A repository of data; the arrow
heads indicate net inputs and
net outputs to store.

Symbols for Data Flow Diagrams

Circle: Acircle (bubble) shows a process that transforms data inputs into data outputs.
Data Flow: A curved line shows the flow of data into or out of a process or data store.

Data Store: A set of parallel lines shows a place for the collection of data items. A data store indicates
that the data is stored which can be used at a later stage or by the other processes in a different order.
The data store can have an element or group of elements.

Source or Sink: Source or Sink is an external entity and acts as a source of system inputs or sink of
system outputs.

Levels in Data Flow Diagrams (DFD)

The DFD may be used to perform a system or software at any level of abstraction. Infact, DFDs may be
partitioned into levels that represent increasing information flow and functional detail. Levels in DFD
are numbered 0, 1, 2 or beyond. Here, we will see primarily three levels in the data flow diagram, which
are: O-level DFD, 1-level DFD, and 2-level DFD.

0-level DFDM

It is also known as fundamental system model, or context diagram represents the entire software
requirement as a single bubble with input and output data denoted by incoming and outgoing arrows.
Then the system is decomposed and described as a DFD with multiple bubbles. Parts of the system
represented by each of these bubbles are then decomposed and documented as more and more detailed
DFDs. This process may be repeated at as many levels as necessary until the program at hand is well
understood. It is essential to preserve the number of inputs and outputs between levels, this concept is
called leveling by DeMacro. Thus, if bubble "A" has two inputs x; and X, and one output y, then the
expanded DFD, that represents "A" should have exactly two external inputs and one external output as
shown in fig:

The Level-0 DFD, also called context diagram of the result management system is shown in fig. As the
bubbles are decomposed into less and less abstract bubbles, the corresponding data flow may also be
needed to be decomposed.

Data entry

operator Marks entry operator

Subject info
entry

Student info
entry

Marks
entry

Administrator Student result

management
User account

maintainence

—
A\ Y

Student info Marksheets Student
reports generated Performance
generated reports generated

Fig: Level-0 DFD of result management system

Software Engineering 21

1-level DFD

In 1-level DFD, a context diagram is decomposed into multiple bubbles/processes. In this level, we
highlight the main objectives of the system and breakdown the high-level process of 0-level DFD into

sub processes.

‘ Enter User id, Password,role
Marks details

Coordinator
Student performance reports

View

infomanage
report

Marks entry clerk TP Marksheets

I

Report
generation

Student Student subject
details choice details

’__9

Student info
entry Student info
management Student 5'_"4‘"“
info
Enter user id, Data entry operator sub-choice

ssword,role Enter subject choice of students management

Student
info
management

Subjectinfo

P a,
role I
User account
info

M N
ADMINIStrator —— Unrinfoentry—) Becouit

management

Fig: Level-1 DFD of result management system
2-Level DFD

2-level DFD goes one process deeper into parts of 1-level DFD. It can be used to project or record the
specific/necessary detail about the system'’s functioning.

1.User Account Maintenance

Administrator Access User info

Display Retrieve User info

User Account
info

User Account Info

Enter/Update/Delete User info

Validate/

Process
User info Update/Delete
User info

%W&Jd 57 £ Wee> A

22
2. Login
The level 2 DFD of this process is given below:
User Account info
Retrieve User info |
Enter User ID, Enter User ID,
Data Entry Password,Role < PasswordRole oo
Operator ™ S -
Enter User ID,
Marks Entry ~ Password,Role
Clerk
Enter User ID, Password, Role
Administrator
3. Student Information Management
Data entry Access User info
Operator
Display Retrieve student info
student N
info
Student Info
Enter/Update/Delete User info
Validate/
Process
studentinfo j Update/Delete
User info
Chapter-4

Software Project Planning

Q1. What is Software project planning. Describe the need of Project management?

A Software Project is the complete methodology of programming advancement from requirement gathering to
testing and support, completed by the execution procedures, in a specified period to achieve intended software
product.

Software Engineering 23
Need of Software Project Management:-

Software development is a sort of all new streams in world business, and there's next to no involvement
in structure programming items. Most programming items are customized to accommodate customer's
necessities. The most significant is that the underlying technology changes and advances so generally
and rapidly that experience of one element may not be connected to the other one. All such business and
ecological imperatives bring risk in software development; hence, it is fundamental to manage software
projects efficiently.

Q2. What are the work of Software Project Manager?

Software manager is responsible for planning and scheduling project development. They manage the
work to ensure that it is completed to the required standard. They monitor the progress to check that the
event is on time and within budget. The project planning must incorporate the major issues like size &
cost estimation scheduling, project monitoring, personnel selection evaluation & risk management. To
plan a successful software project, we must understand:

o Scope of work to be completed
o Risk analysis

o The resources mandatory

o The project to be accomplished

o Record of being followed

Software Project planning starts before technical work start. The various steps of planning activities are:

Size Estimation

& S

Cost Estimation Development Time

~

Resources Requirement

Sse 4

Project Scheduling

Q3. Define the Software Cost Estimation.

For any new software project, it is necessary to know how much it will cost to develop and how much
development time will it take. These estimates are needed before development is initiated, but how is
this done? Several estimation procedures have been developed and are having the following attributes in
common.

.f_%('ymwjd 57 £ Wee> A
1. Project scope must be established in advanced.
2. Software metrics are used as a support from which evaluation is made.

3. The project is broken into small PCs which are estimated individually.
To achieve true cost & schedule estimate, several option arise.

4. Delay estimation
5. Used symbol decomposition techniques to generate project cost and schedule estimates.

6. Acquire one or more automated estimation tools.

Uses of Cost Estimation

1. During the planning stage, one needs to choose how many engineers are required for the project
and to develop a schedule.

2. In monitoring the project's progress, one needs to access whether the project is progressing
according to the procedure and takes corrective action, if necessary.

Cost Estimation Models

A model may be static or dynamic. In a static model, a single variable is taken as a key element for
calculating cost and time. In a dynamic model, all variable are interdependent, and there is no basic
variable.

Models

g

Static,Single Variable Static, Multivariable
Models Models

Static, Single Variable Models: When a model makes use of single variables to calculate desired
values such as cost, time, efforts, etc. is said to be a single variable model. The most common equation
Is:

C=alL”
Where C = Costs
L= size

a and b are constants

The Software Engineering Laboratory established a model called SEL model, for estimating its software
production. This model is an example of the static, single variable model.

Software Engineering 25
E=1.4L"%

DOC=30.4L%
D=4.6L°%°

Where E= Efforts (Person Per Month)
DOC=Documentation (Number of Pages)
D = Duration (D, in months)
L = Number of Lines per code

Static, Multivariable Models: These models are based on method (1), they depend on several
variables describing various aspects of the software development environment. In some model,
several variables are needed to describe the software development process, and selected equation
combined these variables to give the estimate of time & cost. These models are called
multivariable models.

WALSTON and FELIX develop the models at IBM provide the following equation gives a
relationship between lines of source code and effort:

E=5.2L%
In the same manner duration of development is given by
D=4.1L°%

The productivity index uses 29 variables which are found to be highly correlated productivity as
follows:

1=2X2, WX,

Where W; is the weight factor for the i"variable and Xi={-1,0,+1} the estimator gives Xjone of the
values -1, 0 or +1 depending on the variable decreases, has no effect or increases the productivity.

Example: Compare the Walston-Felix Model with the SEL model on a software development expected
to involve 8 person-years of effort.

a. Calculate the number of lines of source code that can be produced.
b. Calculate the duration of the development.
c. Calculate the productivity in LOC/PY

d. Calculate the average manning
Solution:
The amount of manpower involved = 8PY=96persons-months

(a)Number of lines of source code can be obtained by reversing equation to give:

L= (8)urs
Then

L (SEL) =(96/1.4)10.93=94264 LOC
L (SEL) =(96/5.2)10.91=24632 LOC

(b) Duration in months can be calculated by means of equation
D (SEL) =4.6 (L) 0.26
= 4.6 (94.264)0.26 = 15 months
D (W-F) =4.1 L%
= 4.1 (24.632)0.36 = 13 months

(c) Productivity is the lines of code produced per persons/month (year)

94264
PisEL) = = 11783 —Years
Person
24632 LOC
F (Years) = = 3079 —Years
Person

(d) Average manning is the average number of persons required per month in the project

M (SEL) = gili;IM = 6.4Persons
M (W-F) = QiZ;TM = 7.4Persons

Q4.What is a Data Dictionary? Give an example.

Ans.: A Data Dictionary (DD) is a structured repository of data about data. It is a set of
accurate definitions of all DFD data elements and data structures. A data dictionary defines
each term encountered during the analysis and designof a new system. Data dictionary is the
place where we keep the details of the contents of data flows, data stores & processes.

Without a data dictionary the development of large systems becomes difficult. The data
dictionary is an effective solution to the problem of complicated nature. The main purpose
of a data dictionary is to provide a source of reference in which the analyst, the user, the
designer can look up & find out its content and any other relevant information.

The main advantage of a DD is the documentation. It is a valuable reference to the
organization which helps in communication between the analyst and the user. It is also
important in building a database.

The Data Dictionary notations are

= iscomposed of

Software Engineering 27

+ AND

() Optional value[

] Either/Or

{} iteration

** comment

@ identifier (key field)

separates alternative choices in the [] construct

Examples of Data dictionary —

Name = Courtesy-Title + First-Name + (Middle-Name) + Last-Name
Courtesy-Title = [Mr. | Miss | Mrs. | Ms. | Dr. | Prof.]

First-Name = { Legal-Character }

Last-Name = { Legal-Character }

Legal-Character =[A-Z | a-z|0-9|'|-|]]

Q5.Briefly describe a Decision Tree with example.

Ans.:

Decision tree are graphical representation methods of representing a sequence of
logical decisions. It is mainly used when decisions need to be taken or for
defining policies. A decision tree has as many branches as there are logical
alternatives. It is easy to construct, easy to read and easy to update. A decision tree
is used to identify the strategy most likely to reach a goal. It isalso used as a means
for calculating probabilities or making financial or number based decisions. A
decision making tree is essentially a diagram that represents, in a specially organized
way, the decisions, the main external or other events that introduce uncertainty, as
well as possible outcomes of all those decisions and events.

Q6.How to draw a Decision Tree?

Ans.: You start a decision tree with a decision that needs to be made. This decision is

represented by a small square towards the left of a large piece of paper. From this
box draw out lines towards the right for each possible solution, and write that solution
along the line. At the end of each solution line, considerthe results. If the result of
taking that decision is uncertain, draw a small circle. If the result is another
decision that needs to be made, draw another square. Squares represent decisions;
circles represent uncertainty or random factors. Write the decision or factor to
be considered above the square or circle. If you have completed the solution at the
end of the line, just

leave it blank. Starting from the new decision squares on your diagram, drawout
lines representing the options that could be taken. From the circles, drawout lines
representing possible outcomes. Again mark a brief note on the line saying what it
means. Keep on doing this until you have drawn down as many of the possible
outcomes and decisions as you can see leading on from your original decision.

Example : Book return policy in library

If a Faculty returns a book late, a fine of 5% of the book rate is charged. If a
Student returns a book late by 3 days, fine is 10%, else 20% of book rate.

On Time
|_| No Fine
Book Return
5% Fine
NoFine
Student <3 days

|_| 10 % Fine
>3 days 20% Fine

Q7. What are Decision Tables? Explain with example.

Ans.: Decision tables are a precise yet compact way to model complicated logic. Decision
tables, like if-then-else and switch-case statements, associate conditions with actions to
perform. But, unlike the control structures found in traditional programming languages,
decision tables can associate many independent conditions with several actions in an elegant
way. Decision tables are typically divided into four quadrants, as shown below.

Software Engineering 29

The four quadrants

Conditions | Condition alternatives

Actions Action entries

Each decision corresponds to a variable, relation or predicate whose possible values
are listed among the condition alternatives. Each action is a procedureor operation
to perform, and the entries specify whether (or in what order) the action is to be
performed for the set of condition alternatives the entrycorresponds to. Many decision
tables include in their condition alternatives the don't care symbol, a hyphen.
Using don't cares can simplify decision tables, especially when a given condition
has little influence on the actions to be performed. In some cases, entire conditions
thought to be important initially are found to be irrelevant when none of the
conditions influence which actions are performed. The limited-entry decision table
is the simplestto describe. The condition alternatives are simple boolean values, and
the action entries are check-marks, representing which of the actions in a given
column are to be performed.

A technical support company writes a decision table to diagnose printer problems
based upon symptoms described to them over the phone from theirclients.

Printer troubleshooter

Rules

Printer does not print Y|Y Y [N IN | N[N

Conditions | A red light is flashing Y|Y N [Y |[Y | N[N
Printer is unrecognized Y | N

Actions

Check the power cable

X | X | < |2 |
Z
<
Z
<
Z

Check the printer-computer cable X

S stem Analysis and Design
Ensure printer software is installed X X X X
Check/replace ink X | X X | X
Check for paper jam X X

Decision tables make it easy to observe that all possible conditions are accounted for. In the
example above, every possible combination of the three conditions is given. In decision tables,
when conditions are omitted, it is obvious even at a glance that logic is missing. Compare
this to traditional control structures, where it is not easy to notice gaps in program logic with
a mere glance --- sometimes it is difficult to follow which conditions correspond to which
actions!

Just as decision tables make it easy to audit control logic, decision tables demand that a
programmer think of all possible conditions. With traditional control structures, it is easy to
forget about corner cases, especially when the else statement is optional. Since logic is so
important to programming, decision tables are an excellent tool for designing control
logic.

Chapter-5

Testing Strategies& Maintenance

Q1.Explain System Testing.
Ans.: Once source code has been generated, software must be tested to remove and

correct as many errors as possible before delivery to the customer. The goal of system
testing is to design a series of test cases that have a high likelihood of finding errors.
Testing is the process of examining a product to determine what defects it contains. An
information system is an integrated collection of software components. Components can
be tested individually or in groups, orthe entire system can be tested as a whole. Testing is
necessary for the successof the system. A small system error can explode into a much
larger problem.

The proper choice of test data is as important as the test itself. If the test data that is
inputted is not valid or according to the requirements, the reliability of the output will be low.
Test data may be artificial or live. Artificial data is created only for testing purposes. Live
data on the other hand, is taken from the users actual files. So there can be bias toward
correct values. The design of tests for software products is also a very important topic. The
designs may be White Box testing or Black Box testing.

Q2.What is Unit Testing?

Ans.: A strategy for software testing may be viewed as a spiral. Unit testing begins at
the center of the spiral. Testing progresses by moving outward to integration
testing, then towards validation testing and finally system testing.

Unit testing is the process of testing individual code modules before they are
integrated with other modules. The unit being testing can be a function,
subroutine, procedure or method. Units can also be very small groups of
interrelated modules that are always executed as a group. The goal of unit testing
is to identify and fix as many errors as possible before modules are combined into
large units. Errors become more difficult and expensive to locate and fix when
many modules are combined. Here the module interface is tested to see that
information flows in and out of the program unit properly. It makes use of white
box testing. Because a component is not a stand-alone program, a driver and/or
stub software must be developed for each unit test. A driver is like a main
program that accepts test case data, passes the data to the component and prints
the results. A stub replaces modules that are subordinate the component to be
tested. It uses the subordinate modules interface, does data manipulation, prints
the result of entry and then returns control to the module undergoing the test.

Q3.Breifly describe what is Software Quality Assurance.

Ans.: Quality is a characteristic and attribute of something, which is measurable.There can
be two types of quality: quality of design — it is the characteristics that the
designers specify which will include the materials used, performance
specifications, etc. and quality of conformance — which is the degree to whichthe
design specifications are followed during the manufacturing process. Software
Quality Assurance (SQA) consists of a means of monitoring the software
engineering processes to ensure quality. It provides management with the data
necessary to be informed about product quality. Software today is being developed
in rapid speeds and this affects its quality. Software that is developed needs to
meet certain standards for it to be certified and used by users. Software quality
assurance is thus useful to keep the software development process in check and see
that quality products are created forthe market. Just as a team of members that are
used for the development process, a SQA group is a group that assists the
software team in achieving a high quality end product.

The software life cycle includes various stages of development, and each stage
has a goal of quality assurance. Several factors determine the quality ofa system.
Among them are correctness, reliability, efficiency, usability, accuracy, etc. There
are three levels of quality assurance: testing, validation and certification.

In system testing, the goal is to remove the errors in the software. This is
extremely difficult and time-consuming. The system needs to be put through a
“fail-test” so that we know what will make the system fail. A successful test is
one that can uncover the errors so that the system can then be corrected toreach a
good level of quality.

System validation checks the quality of the software in both simulated and live
environments. First the software is passed through the simulated environment (not
live) where the errors and failures are checked based on artificial data and user
requirements. This is also known as alpha testing. The software is tested and verified
and all changes are then made to the software. This modified software is them sent
through the second phase that is the live environment. This is called beta testing
where the software is sent to the user”s site. Here the system will go through actual
user data and requirements. After a scheduled time, failures and errors are
documented and final correction and enhancements are made before the software is
released for use.

The third level is to certify that the program or software package is correct and
conforms to all standards. Nowadays, there is trend towards buying of ready-to-
use software. So certification is of utmost importance. A package that is certified
goes through a team of specialists who test, review, and determine how well it
meets the vendor™s claims. Certification is actually issued after the package
passes the test.

Q4.Explain Software Maintenance. Describe its classification.

Ans.: The last part of the system development life cycle is system maintenance which is
actually the implementation of the post-implementation plan. When systems are
installed, they are generally used for long periods. This period ofuse brings with it
the need to continually maintain the system. Maintenance accounts for 50-80% if the
total system development. Maintenance is not as rewarding and exciting as
developing systems.

Maintenance can be classified as :

(1) Corrective : It means repairing, processing or performance failures or making
changes because of previously uncorrected problems.

(2) Adaptive : It means changing the program functions.

(3) Perfective : It means enhancing the performance or modifying the programs
to respond to the users additional or changing needs

The greatest amount of time is spent on perfective. Maintenance covers a wide
range of activities including correcting coding and design errors, updating

documentation and test data.

Q5.Diffrence between validation & Verification?

AnNS : Verification and Validation example is also given just below to this table.

Verification

Validation

1. Verification is a static practice of
verifying documents, design, code and
program.

1. Validation is a dynamic mechanism of
validating and testing the actual
product.

2. It does not involve executing the
code.

2. It always involves executing the code.

3. It is human based checking of
documents and files.

3. It is computer based execution of
program.

4. Verification uses methods like
inspections, reviews, walkthroughs, and
Desk-checking etc.

4. Validation uses methods like black
box (functional) testing, gray box
testing, and white box (structural)

testing etc.
5. Verification is to check whether the 5. Validation is to check whether
software conforms to specifications. software meets the customer

expectations and requirements.

6. It can catch errors that validation
cannot catch. It is low level exercise.

6. It can catch errors that verification
cannot catch. It is High Level Exercise.

7. Target is requirements specification,
application and software architecture,
high level, complete design, and
database design etc.

7. Target is actual product-a unit, a
module, a bent of integrated modules, and
effective final product.

8. Verification is done by QA team to
ensure that the software is as per the
specifications in the SRS document.

8. Validation is carried out with the
involvement of testing team.

9. It generally comes first-done before
validation.

9. It generally follows after verification.

Q.6. Differences Between Black Box Testing and White Box Testing?

Ans The Differences Between Black Box Testing and White Box Testing are listed
below.

Criteria Black Box Testing White Box Testing

White Box Testing is a software
testing method in which the
internal structure/ design/
implementation of the item being
tested is known to the tester.

Black Box Testing is a software
testing method in which the internal

Definition structure/ design/ implementation of
the item being tested is NOT known
to the tester

Mainly applicable to higher levels Mainly applicable to lower

Levels of testing: Acceptance Testing levels of testing: Unit Testing
Applicable To

System Testing Integration Testing
Generally, independent Software

Responsibility Testers Generally, Software Developers
Programmin .)

Knog\]/vledge J Not Required Required

Implementation i .

KnF(J)WIedge Not Required Required

Basis for Test . I : :
Cases Requirement Specifications Detail Design

Q7.What are the differences between Alpha Testing and Beta Testing?

Alpha testing is a type of acceptance testing, which is performed to identify all possible bugs/issues
before releasing the product to the end-user. Alpha test is a preliminary software field test carried out by
a team of users to find out the bugs that were not found previously by other tests. Alpha testing is to
simulate a real user environment by carrying out tasks and operations that actual user might perform.
Alpha testing implies a meeting with a software vendor and client to ensure that the developers
appropriately meet the client's requirements in terms of the performance, functionality, and durability of
the software.

Alpha testing needs lab environment, and usually, the testers are an internal employee of the
organization. This testing is called alpha because it is done early on, near the end of the software
development, but before beta testing.

Beta Testing is a type of acceptance testing; it is the final test before shipping a product to the
customers. Beta testing of a product is implemented by "real users "of the software application in a "real
environment." In this phase of testing, the software is released to a limited number of end-users of the
product to obtain feedback on the product quality. It allows the real customers an opportunity to provide
inputs into the design, functionality, and usability of the product. These inputs are essential for the
success of the product. Beta testing reduces product failure risks and increases the quality of the product

through customer validation. Direct feedback from customers is a significant advantage of beta testing.
This testing helps to tests the software in a real environment. The experiences of the previous users are
forwarded back to the developers who make final changes before releasing the software product.

KEY TERMS

Abstract Class

Abstract operation

Acceptance testing

Access method

Action stubs

Activation

Actor

Adaptive maintenance

Afferent module

Affinity clustering

Aggregation

Alias
Alpha testing

Analysis

Analysis tools

Anomalies

A class that has no direct instances, but whose descendants
may have direct instances.

Defines the form or protocol of the operation, but not its
implementation.

The process whereby actual users test a completed
information system, the end result of which is the users
acceptance of the system.

An operating system algorithm for storing and locating data
in secondary memory.

That part of a decision table that lists the actions that result
for a given set of conditions.

The time period during which an object performs an
operation.

An external entity that interacts with the system (similar to an
external entity in data flow diagramming).

Changes made to a system to evolve its functionality to
changing business needs or technologies.

A module of a structure chart related to input to the system.

The process of arranging planning matrix information so that
clusters of information with some predetermined level or type
of affinity are placed next to each other on a matrix report.

A part-of relationship between a component object and an
aggregate object.

An alternative name given to an attribute.

User testing of a completed information system using
simulated data.

The third phase of the SDLC in which the current system is
studied and alternative replacement systems are proposed.

CASE tools that enable automatic checking for incomplete,
inconsistent, or incorrect specifications in diagrams, forms,
and reports.

Errors or inconsistencies that may result when a user attempts
to update atable that contains redundant data. There are three

36

Application independence

Application program
interface (API)

Application server

Application software

Association

Association class

Associationrole

Associative entity

Asynchronous message

Attribute

Audit trail

Authorization rules

Backward recovery

(rollback)

Balancing

types of anomalies: insertion, deletion, and modification
anomalies.

The separation of data and the definition of data from the
applications that use these data.

Software which allows a specific front-end program
development platform to communicate with a particular back-
end database engine, even when the front-end and back-end
were not built to be compatible.

A computing server where data analysis functions primarily
reside.

Computer software designed to support organizational
functions or processes.

A relationship between object classes

An association that has attributes or operations of its own, or
that participates in relationships with other classes.

The end of an association which connects it to a class.

An entity type that associates the instances of one or more
entity types and contains attributes that are peculiar to the
relationship between those entity instances. Also called a
gerund.

A message in which the sender does not have to wait for the
recipient to handle the message.

A named property or characteristic of an entity that is of
interest to the organization.

A list of changes to a data file which allows business
transactions to be traced. Both the updating and use of data
should be recorded in the audit trail, since the consequences
of bad data should be discovered and corrected.

Controls incorporated to restrict access to systems and data
and also to restrict the actions that people may take once in
the system.

An approach to rebuilding a file in which before images of
changed records are restored to the file in reverse order until
some earlier state is achieved.

The conservation of inputs and outputs to a data flow diagram

Baseline modules

Baseline Project Plan

Batch processing

Behavior

Beta testing

Binary relationship

Biometric device

Blocking factor

Bottom-up planning

Boundary

Build routines

Business case

Business Process
Reengineering (BPR)

process when that process is decomposed to a lower level.

Software modules that have been tested, documented, and
approved to be included in the most recently created version
of a system.

A major outcome and deliverable from the project initiation
and planning phase which contains the best estimate of a
projectas scope, benefits, costs, risks, and resource
requirements.

Information that is collected or generated at some
predetermined time interval and can be accessed via hard
copy or on-line devices.

Represents how an object acts and reacts.

User testing of a completed information system using real
data in the real user environment.

A relationship between instances of two entity types. This is
the most common type of relationship encountered in data
modeling.

An instrument that detects personal characteristics such as
fingerprints, voice prints, retina prints, or signature dynamics.

The number of physical records per page.

A generic information systems planning methodology that

identifies and defines IS development projects based upon
solving operational business problems or taking advantage of
some business opportunities.

The line that marks the inside and outside of a system and
which sets off the system from its environment.

Guidelines that list the instructions to construct an executable
system from the baseline source code.

The justification for an information system, presented in
terms of the tangible and intangible economic benefits and
costs, and the technical and organizational feasibility of the
proposed system.

The search for, and implementation of, radical change in
business processes to achieve breakthrough improvements in
products and services.

38
Business rules Specifications that preserve the integrity of a conceptual or logical data model.
Calculated field A field which can be derived from other database fields. Also called computed or
derived field.
Candidate key An attribute (or combination of attributes) that uniquely. identifies each
instance of an entity type.
Cardinality The number of instances of entity B that can (or must) beassociated

with each instance of entity A.

Central transform The area of a transform-centered information system where the most
important derivation of new information takes place.

Class diagram Shows the static structure of an object-oriented model: the
object classes, their internal structure, and the relationships in
which they participate.

Class-scope attribute An attribute of a class that specifies a value common to an
entire class, rather than a specific value for an instance.

Client The (front-end) portion of the client/server database system
that provides the user interface and data manipulation
functions.

Client/server architecture =~ A LAN-based computing environment in which a central
database server or engine performs all database commands
sent to it from client workstations, and application programs
on each client concentrate on user interface functions.

Closed-ended questions Questions in interviews and on questionnaires that ask those
responding to choose from among a set of prespecified
responses.

Closed system A system that is cut off from its environment and does not

interact with it.

Code generators CASE tools that enable the automatic generation of program
and database definition code directly from the design
documents, diagrams, forms, and reports stored in the
reposito

Cohesion The extent to which a system or a subsystem performs a
single function.

Command language A human-computer interaction method where users enter
interaction explicit statements into a system to invoke operations.

Competitive strategy
Component

Component diagram
Composition
Computer-aided software
engineering (CASE)
Computing infrastructure
Conceptual data model
Concrete class
Concurrency control
Condition stubs

Configuration management

Constraint
Constructor operation

Context diagram

Corporate strategic
planning

Corrective maintenance

Coupling

The method by which an organization attempts to achieve its
mission and objectives.

An irreducible part or aggregation of parts that make up a
system, also called a subsystem.

Shows the software components or modules and their
dependencies.

A part object that belongs to only one whole object and lives
and dies with the whole.

Software tools that provide automated support for some
portion of the systems development process.

All the resources and practices required to help people
adequately use computer systems to do their primary work.

A detailed model that captures the overall structure of
organizational data while being independent of any database
management system or other implementation considerations.

A class that can have direct instances.

A method for preventing loss of data integrity due to
interference between users in a multiuser environment.

That part of a decision table that lists the conditions relevant
to the decision.

The process of assuring that only authorized changes are
made to a system.

A limit to what a system can accomplish.
An operation that creates a new instance of a class.

An overview of an organizational system that shows the
system boundary, external entities that interact with the
system, and the major information flows between the entities
and the system.

An ongoing process that defines the mission, objectives, and
strategies of an organization.

Changes made to a system to repair flaws in its design,
coding, or implementation.

The extent to which subsystems depend on each other.

40

Critical path scheduling

Cross life cycle CASE

Cross referencing

Data

Data compression
technique

Data couple

Data dictionary
Data flow

Data flow diagram

Data-oriented approach

Data store

Data type

Database

Database engine

Database management
system (DBMS)

A scheduling technique where the order and duration of a

sequence of activities directly affect the completion date of a
project.

CASE tools designed to support activities that occur across
multiple phases of the systems development life cycle.

A feature performed by a data dictionary that enables one
description of a data item to be stored and accessed by all
individuals so that a single definition for a data item is
established and used.

Raw facts about people, objects, and events in an
organization.

Pattern matching and other methods which replace repeating
strings of characters with codes of shorter length.

A diagrammatic representation of the data exchanged
between two modules in a structure chart.

The repository of all data definitions for all organizational
applications.

Data in motion, moving from one place in a system to
another.

A picture of the movement of data between external entities
and the processes and data stores within a system.

An overall strategy of information systems development that
focuses on the ideal organization of data rather than where
and how data are used.

Data at rest, which may take the form of many different
physical representations.

A detailed coding scheme recognized by system software for
representing organizational data.

A shared collection of logically related data designed to meet
the information needs of multiple users in an organization.

The (back-end) portion of the client/server database system
running on the server and providing database processing and
shared access functions.

Software that is used to create, maintain, and provide
controlled access to user databases.

Decision support systems

(DSS)

Decision table

Decision tree

Default value

Degree

Design strategy

Desk checking

DFD completeness

DFD consistency

Diagramming tools

Dialogue

Dialogue diagramming

Direct installation

Discount rate

Computer-based systems designed to help organization
members make decisions; usually composed of a database,
model base, and dialogue system.

A matrix representation of the logic of a decision, which
specifies the possible conditions for the decision and the
resulting actions.

A graphical representation of a decision situation in which
decision points (nodes) are connected together by arcs (one
for each alternative on a decision) and terminate in ovals (the
action which is the result of all of the decisions made on the
path that leads to that oval).

A value a field will assume unless an explicit value is entered
for that field.

The number of entity types that participate in a relationship.

A high-level statement about the approach to developing an
information system. It includes statements on the systemas
functionality, hardware and system software platform, and
method for acquisition.

A testing technique in which the program code is sequentially
executed manually by the reviewer.

The extent to which all necessary components of a data flow
diagram have been included and fully described.

The extent to which information contained on one level of a
set of nested data flow diagrams is also included on other
levels.

CASE tools that support the creation of graphical
representations of various system elements such as process
flow, data relationships, and program structures.

The sequence of interaction between a user and a system.

A formal method for designing and representing human-
computer dialogues using box and line diagrams.

Changing over from the old information system to a new one
by turning off the old system when the new one is turned on.

The rate of return used to compute the present value of future
cash flows.

42

Disruptive technologies

Distributed database

Documentation

Documentation generators

Domain

Drop-down menu

DSS generators

Economic feasibility

Efferent module

Electronic performance
support system (EPSS)

Encapsulation

Encryption

End users

End-user development

Technologies that enable the breaking of long-held business
rules that inhibit organizations from making radical business
changes.

A single logical database that is spread across computers in
multiple locations which are connected by a data
communications link.

See External documentation, Internal documentation, System
documentation, User documentation.

CASE tools that enable the easy production of both technical
and user documentation in standard formats.

The set of all data types and values that an attribute can
assume.

A menu positioning method that places the access point of the
menu near the top line of the display; when accessed, menus
open by dropping down onto the display.

General purpose computer-based tools used to develop
specific decision support systems.

A process of identifying the financial benefits and costs
associated with a development project.

A module of a structure chart related to output from the
system.

Component of a software package or application in which
training and educational information is embedded. An EPSS
can take several forms, including a tutorial, an expert system
shell, and hypertext jumps to reference material.

The technique of hiding the internal implementation details of
an object from its external view.

The coding (or scrambling) of data so that they cannot be
read by humans.

Non-information-system professionals in an organization who
specify the business requirements for and use software
applications. End users often request new or modified
applications, test and approve applications, and may serve on
project teams as business experts.

An approach to systems development in which users who are
not computer experts satisfy their own computing needs

Entity instance (instance)

Entity-relationship data
model (E-R model)

Entity- A A
relationshipEdiagramk(E-
REdiagram)

Entity type

Environment

Event

Exclusive relationships

Executive support systems

Expert systems

External documentation

External information

Feasibility

Field

File organization

through the use of high-level software and languages such as
electronic spreadsheets and relational database management
systems.

Asingle occurrence of an entity type.

A detailed, logical representation of the entities, associations,
and data elements for an organization or business area.

A graphical representation of an E-R model.

A collection of entities that share common properties or
characteristics.

Everything external to a system which interacts with the
system.

Something that takes place at a certain point in time; a
noteworthy occurrence that triggers a state transition.

A set of relationships for which an entity instance can
participate in only one of the relationships at a time.

Computer-based systems developed to support the
information-intensive but limited-time decision making of
executives (also referred to as executive information
systems).

Computer-based systems designed to mimic the performance
of human experts.

System documentation that includes the outcome of
structured diagramming techniques such as data flow and
entity-relationship diagrams.

Information that is collected from or created for individuals
and groups external to an organization.

See Economic feasibility, Legal and contractual feasibility,
Operational feasibility, Political feasibility, Schedule
feasibility, Technical feasibility.

The smallest unit of named application data recognized by
system software.

A technique for physically arranging the records of a file on
secondary storage devices.

44

File server

First normal form (1NF)

Flag

Foreign key

Form

Formand report
generators

Form interaction

Formal system

Forward recovery
(roll forward)

Functional decomposition

Functional dependency

Gantt chart

Hashed file organization

A device that manages file operations and is shared by each
client PC attached to a LAN.

A relation that contains no repeating data.

A diagrammatic representation of a message passed between
two modules.

An attribute that appears as a nonkey attribute in one relation
and as a primary key attribute (or part of a primary key) in
another relation.

A business document that contains some pre-defined data and
may include some areas where additional data are to be filled
in. An instance of a form is typically based on one database
record.

CASE tools that support the creation of system forms and
reports in order to prototype how systems will "look and feel”
to users.

A highly intuitive human-computer interaction method
whereby data fields are formatted in a manner similar to
paper-based forms.

The official way a system works
organizational documentation.

as described in

An approach to rebuilding a file in which one starts with an
earlier version of the file and either reruns prior transactions
or replaces a record with its image after each transaction.

An iterative process of breaking the description of a system
down into finer and finer detail which creates a set of charts
in which one process on a given chart is explained in greater
detail on another chart.

A particular relationship between two attributes. For any
relation R, attribute B is functionally dependent on attribute
A if, for every valid instance of A, that value of A uniquely
determines the value of B. The functional dependence of B on
A is represented as A > B.

A graphical representation of a project that shows each task
activity as a horizontal bar whose length is proportional to its
time for completion.

The address for each record is determined using a hashing

Hashing algorithm

Help desk

Homonym

Horizontal partitioning

I-CASE

lcon

Identifier

Implementation

Incremental commitment

Index

Indexed file organization

Indifferent condition

Informal system

Information

algorithm.

A routine that converts a primary key value into a relative
record number (or relative file address).

A single point of contact for all user inquiries and problems
about a particular information system or for all users in a
particular department.

A single name that is used for two or more different attributes
(for example, the term invoice to refer to both a customer
invoice and a supplier invoice).

Distributing the rows of a table into several separate tables.

An automated systems development environment that
provides numerous tools to create diagrams, forms, and
reports; provides analysis, reporting, and code generation
facilities; and seamlessly shares and integrates data across
and between tools.

Graphical pictures that represent specific functions within a
system.

A candidate key that has been selected as the unique,
identifying characteristic for an entity type.

The sixth phase of the SDLC in which the information system
is coded, tested, installed, and supported in the organization.

A strategy in systems analysis and design in which the project
is reviewed after each phase and continuation of the project is
rejustified in each of these reviews.

A table or other data structure used to determine the location
of rows in a file that satisfy some condition.

The records are either stored sequentially or non sequentially
and an index is created that allows software to locate
individual records.

In a decision table, a condition whose value does not affect
which actions are taken for two or more rules.

The way a system actually works.

Data that have been processed and presented in a form
suitable for human interpretation, often with the purpose of
revealing trends or patterns.

46

Information center

Information repository

Information systems
analysis and design

Information systems
planning (ISP)

Inheritance

Input

Inspections

Installation

Intangible benefit

Intangible cost

Integration testing

Interface

Internal documentation

Internal information

An organizational unit whose mission is to support users in
exploiting information technology.

Automated tools to manage and control access to
organizational business information and application portfolios
as components within a comprehensive repository.

The complex organizational process whereby computer-based
information systems are developed and maintained.

An orderly means of assessing the information needs of an
organization and defining the systems, databases, and
technologies that will best satisfy those needs.

The property that occurs when entity types or object classes
are arranged in a hierarchy and each entity type or object
class assumes the attributes and methods of its ancestors; that
is, those higher up in the hierarchy. Inheritance allows new
but related classes to be derived from existing classes.

Whatever a system takes from its environment in order
tofulfill its purpose.

A testing technique in which participants examine program
code for predictable language-specific errors.

The organizational process of changing over from the current
information system to a new one.

A benefit derived from the creation of an information system
that cannot be easily measured in dollars or with certainty.
(6) See also Tangible benefit.

A cost associated with an information system that cannot be
easily measured in terms of dollars or with certainty.

The process of bringing together all of the modules that a
program comprises for testing purposes. Modules are
typically integrated in a top-down, incremental fashion.

In systems theory, the point of contact where a system meets
its environment or where subsystems meet each other.

System documentation that is part of the program source code
or is generated at compile time.

Information that is collected, generated, or consumed within
an organization.

Interrelated components

JAD session leader

Joint Application Design
(JAD)

Key business processes

Knowledge engineersE

Legal and contractual

feasibility

Level-0 diagram

Level-n diagram

Local area network (LAN)

Location transparency

Logical database model

Logical design

Logical system description

Lower CASE

Dependence of one subsystem on one or more subsystems.

The trained individual who plans and leads Joint Application
Design sessions.

A structured process in which users, managers, and analysts
work together for several days in a series of intensive
meetings to specify or review system requirements.

The structured, measured set of activities designed to produce
a specific output for a particular customer or market.

Computer professionals whose job it is to elicit knowledge
from domain experts in order to develop expert systems.
(Website)

The process of assessing potential legal and contractual
ramifications due to the construction of a system.

A data flow diagram that represents a systems major
processes, data flows, and data stores at a high level of detail.

A DFD that is the result of n nested decompositions of a
series of subprocesses from a process on a level-0 diagram.

The cabling, hardware, and software used to connect
workstations, computers, and file servers located in a
confined geographical area (typically within one building or
campus).

A design goal for a distributed database which says that a
user (or user program) requesting data need not know at
which site those data are located.

A description of data using a notation that corresponds to an
organization of data used by database management systems.

The fourth phase of the SDLC in which all functional features
of the system chosen for development in analysis are
described independently of any computer platform.

Description of a system that focuses on the systems function
and purpose without regard to how the system will be
physically implemented.

CASE tools designed to support the implementation and
maintenance phases of the systems development life cycle.

48

Maintainability

Maintenance

Management information

systems (MIS)

Mean time between failures

(MTBF)

Menu interaction

Method

Middleware

Mission statement

Modularity

Module

Multivalued attribute

Natural language
interaction

Normal form

Normalization

The ease with which software can be understood, corrected,
adapted, and enhanced.

The final phase of the SDLC in which an information system
Is systematically repaired and improved; or changes made to
a system to fix or enhance its functionality.

Computer-based systems designed to provide standard reports
for managers about transaction data.

A measurement of error occurrences that can be tracked over
time to indicate the quality of a system.

A human-computer interaction method where a list of system
options is provided and a specific command is invoked by
user selection of a menu option.

The implementation of an operation.

A combination of hardware, software, and communication
technologies that bring together data management,
presentation, and analysis into a three-tiered client/server
environment.

A statement that makes it clear what business a company is
in.

Dividing a system up into chunks or modules of a relatively
uniform size.

A self-contained component of a system, defined by function.
Shows that an object is an instance of more than one class
An attribute that may take on more than one value for each
entity instance.

A human-computer interaction method where inputs to and
outputs from a computer-based application are in a
conventional speaking language such as English.

A state of a relation that can be determined by applying
simple rules regarding dependencies to that relation.

The process of converting com-plex data structures
into simple, stable data structures.

Null value

Object

Object-based interaction
Object class (class)
Object diagram
Object-oriented analysis
and design (OOAD)
Objective statements
On-line processing
One-time cost
Open-ended questions
Open system

Operation

Operational feasibility

Output

Outsourcing

Overriding

A special field value, distinct from 0O, blank, or any other
value, that indicates that the value for the field is missing or
otherwise unknown.

An entity that has a well-defined role in the application
domain and has state, behavior, and identity.

A human-computer interaction method where symbols are
used to represent commands or functions.

A set of objects that share a common structure and a common
behavior.

A graph of instances that are compatible with a given class
diagram.

Systems development methodologies and techniques based
on objects rather than data or processes.

A series of statements that express organizations qualitative
and quantitative goals for reaching a desired future position.

The collection and delivery of the most recent available
information, typically through an on-line workstation. (14)

A cost associated with project start-up and development, or
system start-up. (6)

Questions in interviews and on questionnaires that have no
prespecified answers.

A system that interacts freely with its environment, taking
input and returning output.

A function or a service that is provided by all the instances of
a class.

The process of assessing the degree to which a proposed
system solves business problems or takes advantage of
business opportunities.

Whatever a system returns to its environment in order to
fulfill its purpose.

The practice of turning over responsibility of some to all of
an organizationas information systems applications and
operations to an outside firm.

The process of replacing a method inherited from a super
class by a more specific implementation of that method in a

50
subclass.

Package A set of cohesive, tightly coupled classes representing a
subsystem.

Page The amount of data read or written in one secondary memory

Parallel installation

Partial functional
dependency

Participatory Design (PD)

Perfective maintenance

PERT chart

Phased installation

Physical design

Physical file

Physical record

Physical system description

Picture (or template)

(disk) input or output operation. For 1/0 with a magnetic tape,
the equivalent term is record block.

Running the old information system and the new one at the
same time until management decides the old system can be
turned off.

A dependency in which one or more nonkey attributes are
functionally dependent on part, but not all, of the primary
key.

A systems development approach that originated in Northern
Europe in which users and the improvement in their work
lives are the central focus.

Changes made to a system to add new features or to improve
performance.

A diagram that depicts project activities and their inter-
relationships. PERT stands for Program Evaluation Review
Technique.

Changing from the old information system to the new one
incrementally, starting with one or a few functional
components and then gradually extending the installation to
cover the whole new system.

The fifth phase of the SDLC in which the logical
specifications of the system from logical design are
transformed into technology-specific details from which all
programming and system construction can be accomplished.

A named set of contiguous records.

A group of fields stored in adjacent memory locations and
retrieved together as a unit.

Description of a system that focuses on how the system will
be materially constructed.

A pattern of codes that restricts the width and possible values
for each position of a field.

Pointer

Political feasibility

Polymorphism

Pop-up menu

Present value

Preventive maintenance

Primitive DFD

Process

Process-oriented approach

Processing logic

Project

Project close-down

Project execution

Project identification and
selection

Project initiation

Project initiation and
planning

A field of data that can be used to locate a related field or
record of data.

The process of evaluating how key stakeholders within the
organization view the proposed system.

The same operation may apply to two or more classes in
different ways.

A menu positioning method that places a menu near the
current cursor position.

The current value of a future cash flow.

Changes made to a system to avoid possible future problems.

The lowest level of decomposition for a data flow diagram.

The work or actions performed on data so that they are
transformed, stored, or distributed.

An overall strategy to information systems development that
focuses on how and when data are moved through and
changed by an information system.

The steps by which data are transformed or moved and a
description of the events that trigger these steps.

A planned undertaking of related activities to reach an
objective that has a beginning and an end.

The final phase of the project management process that
focuses on bringing a project to an end.

The third phase of the project management process in which
the plans created in the prior phases (project initiation and
planning) are put into action.

The first phase of the SDLC in which an organizations total
information system needs are identified, analyzed, prioritized,
and arranged.

The first phase of the project management process in which
activities are performed to assess the size, scope, and
complexity of the project and to establish procedures to
support later project activities.

The second phase of the SDLC in which a potential
information systems project is explained and an argument for

52

Project management

Project manager

Project planning

Project workbook

Prototyping

Pseudocode

Purpose

Query operation

Rapid Application
Development (RAD)

Record partitioning

Recurring cost

Recursive foreign key

continuing or not continuing with the project is presented; a
detailed plan is also developed for conducting the remaining
phases of the SDLC for the proposed system.

A controlled process of initiating, planning, executing, and
closing down a project.

An individual with a diverse set of skills--management,
leadership, technical, conflict management, and customer
relationship--who is responsible for initiating, planning,
executing, and closing down a project.

The second phase of the project management process which
focuses on defining clear, discrete activities and the work
needed to complete each activity within a single project.

An on-line or hard copy repository for all project
correspondence, inputs, outputs, deliverables, procedures, and
standards that is used for performing project audits,
orientation of new team members, communication with
management and customers, scoping future projects, and
performing post-project reviews.

An iterative process of systems development in which
requirements are converted to a working system which is
continually revised through close work between an analyst
and users.

A method for representing the instructions in a module with
language very similar to computer programming code.

The overall goal or function of a system.

An operation that accesses the state of an object but does not
alter the state.

Systems development methodology created to radically
decrease the time needed to design and implement
information systems. RAD relies on extensive user
involvement, Joint Application Design sessions, prototyping,
integrated CASE tools, and code generators.

The process of splitting logical records into separate physical
segments based on affinity of use.

A cost resulting from the ongoing evolution and use of a
system.

A foreign key in a relation that references the primary key

Reengineering

Referential integrity

Relation

Relational database model

Relationship

Repeating group

Report

Repository

Resource

Reusability

Reverse engineering

values of that same relation.

Automated tools that read program source code as input,
perform an analysis of the programs data and logic, and then
automatically, or interactively with a systems analyst, alter an
existing system in an effort to improve its quality or
performance.

An integrity constraint specifying that the value (or existence)
of an attribute in one relation depends on the value (or
existence) of an attribute in the same or another relation.

A named, two-dimensional table of data. Each relation
consists of a set of named columns and an arbitrary number
of unnamed rows.

A data model that represents data in the form of tables or
relations.

An association between the instances of one or more entity
types that is of interest to the organization.

A set of two or more multi valued attributes that are logically
related.

A business document that contains only pre-defined data; that
is, it is a passive document used solely for reading or
viewing. A report typically contains data from many
unrelated records or transactions.

A centralized database that contains all diagrams, form and
report definitions, data structure, data definitions, process
flows and logic, and definitions of other organizational and
system components; it provides a set of mechanisms and
structures to achieve seamless data-to-tool and data-to-data
integration.

Any person, group of people, piece of equipment, or material
used in accomplishing an activity.

The ability to design software modules in a manner so that
they can be used again and again in different systems without
significant modification.

Automated tools that read program source code as input and
create graphical and textual representations of program
design-level information such as program control structures,
data structures, logical flow, and data flow.

54

Rules

Schedule feasibility

Scribe

Second normal form (2NF)

Secondary key

Sequence diagram

Sequential file organization

Single location installation

Slack time

Smart card

Source/sink

Stakeholder

State

That part of a decision table that specifies which actions are
to be followed for a given set of conditions.

The process of assessing the degree to which the potential
timeframe and completion dates for all major activities within
a project meet organizational deadlines and constraints for
affecting change.

The person who makes detailed notes of the happenings at a
Joint Application Design session.

Arelation is in second normal form if it is in first normal
form and every non key attribute is fully functionally
dependent on the primary key. Thus no non key attribute is
functionally dependent on part (but not all) of the primary
key.

One or a combination of fields for which more than one
record may have the same combination of values.

Depicts the interactions among objects during a certain period
of time.

The records in the file are stored in sequence according to a
primary key value.

Trying out a new information system at one site and using the
experience to decide if and how the new system should be
deployed throughout the organization.

The amount of time that an activity can be delayed without
delaying the project.

A thin plastic card the size of a credit card with an embedded
microprocessor and memory.

The origin and/or destination of data, sometimes referred to
as external entities.

A person who has an interest in an existing or new
information system. A stakeholder is someone who is
involved in the development of a system, in the use of a
system, or someone who has authority over the parts of the
organization affected by the system.

Encompasses an objects properties (attributes and
relationships) and the values those properties have.

State diagram

State transition

Statement of Work (SOW)

Structure chart

Structured English

Stub testing

Support

Synchronous message

Synonyms

System

System documentation

System librarian

System testing

A model of the states of an object and the events that cause
the object to change from one state to another.

Changes in the attributes of an object or in the links an object
has with other objects.

Document prepared for the customer during project initiation
and planning that describes what the project will deliver and
outlines generally at a high level all work required to
complete the project.

Hierarchical diagram that shows how an information system
is organized.

Modified form of the English language used to specify the

logic of information system processes. Although there is no
single standard, Structured English typically relies on action
verbs and noun phrases and contains no adjectives or adverbs.

A technique used in testing modules, especially where
modules are written and tested in a top-down fashion, where a
few lines of code are used to substitute for subordinate
modules.

Providing ongoing educational and problem solving
assistance to information system users. For in-house
developed systems, support materials and jobs will have to be
prepared or designed as part of the implementation process.

A type of message in which the caller has to wait for the
receiving object to finish executing the called operation
before it can resume execution itself.

Two different names that are used to refer to the same data
item (for example, car and automobile).

An inter-related set of components, with an identifiable
boundary, working together for some purpose.

Detailed information about a systems design specifications,
its internal workings, and its functionality.

A person responsible for controlling the checking-out and
checking-in of baseline modules for a system when a system
is being developed or maintained.

The bringing together of all the programs that a system

comprises for testing purposes. Programs are typically
integrated in a top-down, incremental fashion.

56

Systems analyst

Systems development life
cycle (SDLC)

Systems development
methodology

Tangible benefit
Tangible cost

Technical feasibility
Ternary relationship

Third normal form (3NF)

Three-tiered client/server

Top-down planning

Transaction analysis

Transaction-centered
system

Transaction processing
systems (TPS)

Transactions

The organizational role most responsible for the analysis and
design of information systems.

The traditional methodology used to develop, maintain, and
replace information systems.

A standard process followed in an organization to conduct all
the steps necessary to analyze, design, implement, and
maintain information systems.

A benefit derived from the creation of an information system
that can be measured in dollars and with certainty.

A cost associated with an information system that can be
measured in terms of dollars and with certainty.

A process of assessing the development organizations ability
to construct a proposed system.

A simultaneous relationship among instances of three entity
types.

A relation is in third normal form if it is in second normal
formand no transitive dependencies exist.

Advanced client/server architectures in which there are three
logical and distinct applications--data management,
presentation, and analysis--which are combined to create a
single information system.

A generic information systems planning methodology that
attempts to gain a broad understanding of the information
system needs of the entire organization.

The process of turning data flow diagrams of a transaction-
centered system into structure charts.

An information system that has as its focus the dispatch of
data to their appropriate locations for processing.

Computer-based versions of manual organization systems
dedicated to handling the organizations transactions; e.g.,
payroll.

Individual, simple events in the life of an organization that
contain data about organizational activity.

Transform analysis The process of turning data flow diagrams of a transform-centered

system into structure charts.

Transform-centered system An information system that has as its focus the derivation of

Transitive dependency
Triggering operation

(trigger)

Turnaround document

Unary relationship
(recursive relationship)
Unit testing

Update operation
Upper CASE

Usability

Use case

Use-case diagram

User documentation

Value chain analysis

Vertical partitioning

View

new information from existing data.

A functional dependency between two (or more) non key
attributes in a relation.

An assertion or rule that governs the validity of data
manipulation operations such as insert, update, and delete.

Information that is delivered to an external customer as an
output that can be returned to provide new information as an
input to an information system.

A relationship between the instances of one entity type.

Method in which each module is tested alone in an attempt to
discover any errors in its code.

An operation that alters the state of an object.

CASE tools designed to support information planning and the
project identification and selection, project initiation and
planning, analysis, and design phases of the systems
development life cycle.

An overall evaluation of how a system performs in supporting
a particular user for a particular task.

A complete sequence of related actions initiated by an actor,
it represents a specific way of using the system.

A diagram that depicts the use cases and actors for a system.

Written or other visual information about an application
system, how it works, and how to use it.

The process of analyzing an organizations activities to
determine where value is added to products and/or services
and the cost are incurred for doing so; usually also includes a
comparison with the activities, added value, and costs of
other organizations for the purpose of making improvements
in the organizations operations and performance.

Distributing the columns of a table into several separate
tables.

A subset of the database that is presented to one or more
users.

58

Walkthrough A peer group review of any product created during the
systems development process. Also called structured
walkthrough.

Well-structured relation A relation that contains a minimum amount of redundancy

and allows users to insert, modify, and delete the rows in a
table without errors or inconsistencies.

Work breakdown structure The process of dividing the project into manageable tasks and
logically ordering them to ensure a smooth evolution between
tasks.

CASE STUDY

CASE 1: A Railway reservation system functions as follows:

The passenger fills in a reservation form giving his/her particulars and source and
destination details. The counter clerk ensures whether seats is available or not from
the reservation register. if seat is not available ,the form is returned back to the
passenger. Otherwise the clerk will prepare the tickets, compute the charges for the
tickets and a booking statement is composed. One copy of the booking statement is
retained as office copy, one is given to the train conductor and one copy is pasted on
the compartment. A cash statement is prepared at the end of each shift.

PREPARE A DATAFLOW DIAGRAM FOR THE ABOVE SYSTEM

Context Diagram for Railway Reservation System

First Level Data Flow Diagram

SOLUTION:

Passenger

Reservation
Form

Ticket Conductor

Booking Rates

Booking Statement

Rates 5

Reservation
Details

Enquiry
Cash Statement

Cash register Reservation Register

60
Passenger
Reservation Forin retufned if no seat available
Form
1.1
Enquiry] Ticket
Enquiry
Reservation Process
Register
Reservation Details
Reservation Particular
Update reservation Details
_ 1.2
Rates Booking Rates 3
Compute
amount and
Prepare ticket
Ticket and Cash Details
Conductor

m

Cash Cash Statement Booking Booking statement
) . Statement

Register preparation

