Biyvani's Think Tank

Concept based notes

Object Oriented Concepts Using

Java Programming
BCA IV Sem.

Ms. Smriti Verma
Asst. Professor
Dept. of IT
Biyani Girls College, Jaipur

BIYANI

Where you can trust

Published by :
Think Tanks
Biyani Group of Colleges

Concept & Copyright :

©Biyani Shikshan Samiti

Sector-3, Vidhyadhar Nagar,

Jaipur-302 023 (Rajasthan)
Ph:0141-2338371,2338591-95 Fax:0141-2338007
E-mail : acad@biyanicolleges.org

Website :www.gurukpo.com; www.biyanicolleges.org

ISBN : 978-93-83462-37-7

Edition: 2025

While every effort is taken to avoid errors or omissions in this Publication, any
mistake or omission that may have crept in is not intentional. It may be taken note of
that neither the publisher nor the author will be responsible for any damage or loss of
any kind arising to anyone in any manner on account of such errors and omissions.

Leaser Type Setted by :
Biyani College Printing Department

mailto:acad@biyanicolleges.org
http://www.biyanicolleges.org/

Preface

I am glad to present this book, especially designed to serve the needs of

the students. The book has been written keeping in mind the general weakness
in understanding the fundamental concepts of the topics. The book is self-
explanatory and adopts the “Teach Yourself” style. It is based on question-
answer pattern. The language of book is quite easy and understandable based
on scientific approach.

Any further improvement in the contents of the book by making corrections,
omission and inclusion is keen to be achieved based on suggestions from the
readers for which the author shall be obliged.

| acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr. Sanjay
Biyani, Director (Acad.) Biyani Group of Colleges, who are the backbones and
main concept provider and also have been constant source of motivation
throughout this Endeavour. They played an active role in coordinating the various
stages of this Endeavour and spearheaded the publishing work.

| look forward to receiving valuable suggestions from professors of various
educational institutions, other faculty members and students for improvement of
the quality of the book. The reader may feel free to send in their comments and
suggestions to the under mentioned address.

Author

UNIT -1

Java Programming : Basic concepts of object oriented programming(Objects and
Classes, Data Abstraction & Encapsulation, Inheritance, Polymorphism, Dynamic
binding, Message passing), Java features, JVM, Byte code interpretation, simple java
program, command line argument, Data types, type casting, operators (Arithmetic,
increment, decrement, relational, logical, bit wise, conditional) and expressions.

UNIT - 11

Decision Making and Branching : Decision making and branching (if...else, else if,
switch), looping, classes, objects and methods, visibility control, constructors, wrapper
classes, nesting of methods, Arrays and strings handling. Polymorphism: Function
overriding, Operator overloading, final classes.

UNIT - 111

Inheritance & Multithreaded Programming : Inheritance, Types of Inheritance,
Abstract class, interfaces, packages, multithreaded programming, extending thread, life
cycle of thread, using thread methods, thread priority, synchronization.

Exception Handling : Exception-Handling fundamentals, Exception types, try, catch,
throw, finally, creating exception sub classes.

UNIT - IV
JSP :Introduction to JSP, Directory Structure, Lifecycle JSP, Scripting Elements .

JAR files, Servlets Life cycle of servlet, JDBC connectivity.

Chapter-1

Introduction of Java

Q1

Ans.:

Q.2.

Ans.:

Write a note on History of Java?

History of Java: James Gosling initiated Java language project in June 1991 for
use in one of his many set top box projects. The language, initially called
‘Oak’ after an oak tree that stood outside Gosling's office, also went by the
name ‘Green’ and ended up later being renamed as Java, from a list of
random words. Sun released the first public implementation as Java 1.0 in
1995. It promised Write Once, Run Anywhere (WORA), providing no-cost
run-times on popular platforms. On 13 November, 2006, Sun released much
of Java as free and open source software under the terms of the GNU General
Public License (GPL). On 8 May, 2007, Sun finished the process, making all of
Java's core code free and open source, aside from a small portion of code to
which Sun did not hold the copyright.

What is java? Explain in detail.

In the Java whitepaper (available for Sun’s website http:/ /java.sun.com), Sun
describes Java as follows: Java is a simple, object-oriented, distributed,
interpreted, robust, secure, architectural neutral, portable, high performance,
multithreaded, and dynamic language. While this seems like a string of
buzzwords, but the fact is that these buzzwords actually describe the
language and its features. To get a feeling of why Java is important and
interesting, let’s look at the features behind some of these buzzwords. Java is
Simple One of the design goals of Java was to make it much easier to write
bug-free code. In order to help programmers with this, the language has to be
simple. The simplicity of Java makes it fun to program with, and its programs
are easy to write and read. If you have programmed in C or C++, you would
know that half of the bugs in your programs are related to memory
allocation. With Java you will not have this problem as the Java runtime
environment provides automatic memory allocation and garbage collection.
Java is Object-Oriented; Object-Oriented (OO) programming was the catch
phrase of the 1990’s. As a marketing strategy, many companies claim that
their software is object oriented, when in fact they are not. An earlier

%Wd-,d- a7/ W WA

Q.3.

Ans.:

computer scientist (S. King?) claimed that if someone wanted to sell his cat,
he should not say it is clean, nice, beautiful....etc but rather it is object-
oriented. The next time you go buy a toaster, make sure it is object-oriented!
1 You will do OO programming this term and more of it next term.... Java is
Distributed As I mentioned earlier, the aim of the Green project was to build a
distributed system that would allow all consumer electronic devices to talk to
one another. Since this was a design goal, Java provides a lot of high-level
support for networking. You will see more of this next year! [J Java is
Interpreted Java is an interpreted language. This means that Java programs
are not compiled into machine platform-dependant language. But rather they
are compiled into byte-codes for the Java Virtual Machine (JVM). To run Java
programs, you use the Java interpreter to run the Java byte-codes. Java byte
codes are platform-independent, which means they can run on any platform
with a Java interpreter. One catch of interpreted code is that it is a bit slower
than machine code when it runs. However, with all the Java optimization
techniques and Just In-Time Compilers technology (JIT), Java byte-codes will
run as fast as C or C++ compiled code. Java is Robust Buggy software can be
written in any language, and Java is no exception. However, Java eliminates
certain types of programming errors and that makes it easier to write reliable
software. Java is a strongly typed language and that allows for extensive
compile-time checking. Also, the fact that Java does not have pointers
eliminates another class of memory-related bugs.

What are the basic features of Java Language?

Java Features: Here we list the basic features that make Java a powerful and
popular programming language :
. Platform Independence :

o The Write-Once-Run-Anywhere ideal has not been achieved
(tuning for different platforms usually required), but closer than
with other languages.

. Object Oriented :

o Object oriented throughout - no coding outside of class
definitions, including main().
o An extensive class library available in the core language
packages.
. Compiler/Interpreter Combo :
o Code is compiled to bytecodes that are interpreted by a Java

virtual machines (JVM).

Core Java Programming 9

o This provides portability to any machine for which a virtual
machine has been written.
o The two steps of compilation and interpretation allow for
extensive code checking and improved security.
. Robust :

o Exception handling built-in, strong type checking (that is, all
data must be declared an explicit type), local variables must be

initialized.
. Several dangerous features of C & C++ eliminated:
o No memory pointers
o No preprocessor
o Array index limit checking
. Automatic Memory Management
o Automatic garbage collection - memory management handled
by JVM.
. Security
o No memory pointers
o Programs runs inside the virtual machine sandbox.
o Array index limit checking

o Code pathologies reduced by
. bytecode verifier - checks classes after loading

. class loader - confines objects to unique namespaces.
Prevents loading a hacked "java.lang. Security Manager"
class, for example.

. security manager - determines what resources a class can
access such as reading and writing to the local disk.

. Dynamic Binding

o The linking of data and methods to where they are located, is
done at run-time.

o New classes can be loaded while a program is running. Linking
is done on the fly.

o Even if libraries are recompiled, there is no need to recompile
code that uses classes in those libraries.

http://www.particle.kth.se/~lindsey/JavaCourse/Book/Part1/Supplements/Chapter01/JVM.html

10

%Wd-,d- a7/ W WA

Q..

Ans.:

This differs from C++, which uses static binding. This can result in
fragile classes for cases where linked code is changed and memory
pointers then point to the wrong addresses.

. Good Performance :

o Interpretation of bytecodes slowed performance in early
versions, but advanced virtual machines with adaptive and just-
in-time compilation and other techniques now typically provide
performance up to 50% to 100% the speed of C++ programs.

. Threading :

o Lightweight processes, called threads, can easily be spun off to
perform multiprocessing.

o Can take advantage of multiprocessors where available.
o Great for multimedia displays.
. Built-in Networking :

o Java was designed with networking in mind and comes with
many classes to develop sophisticated Internet communications.

Features such as eliminating memory pointers and by checking array
limits greatly help to remove program bugs. The garbage collector
relieves programmers of the big job of memory management. These
and the other features can lead to a big speedup in program
development compared to C/C++ programming.

What is JVM? Explain its architecture with diagram.

Java Virtual Machine: A Java Virtual Machine (JVM) is a set of computer
software programs and data structures which use a virtual machine model for
the execution of other computer programs and scripts. The model used by a
JVM accepts a form of computer intermediate language commonly referred to
as Java bytecode. This language conceptually represents the instruction set of
a stack-oriented, capability architecture.

Java Virtual Machines operate on Java bytecode, which is normally (but not
necessarily) generated from Java source code; a JVM can also be used to
implement programming languages other than Java. For example, Ada source
code can be compiled to Java bytecode, which may then be executed by a
JVM. JVMs can also be released by other companies besides Sun (the

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Intermediate_language
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Stack-oriented_programming_language
http://en.wikipedia.org/wiki/Capability_architecture
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Ada_%28programming_language%29

Core Java Programming 11

developer of Java) -- JVMs using the "Java" trademark may be developed by
other companies as long as they adhere to the JVM specification published by
Sun (and related contractual obligations).

The JVM is a crucial component of the Java Platform. Because JVMs are
available for many hardware and software platforms, Java can be both
middleware and a platform in its own right — hence the expression "write
once, run anywhere." The use of the same bytecode for all platforms allows
Java to be described as "compile once, run anywhere", as opposed to "write
once, compile anywhere", which describes cross-platform compiled
languages. The JVM also enables such unique features as Automated
Exception Handling which provides 'root-cause' debugging information for
every software error (exception) independent of the source code.

The JVM is distributed along with a set of standard class libraries which
implement the Java API (Application Programming Interface). The virtual
machine and API have to be consistent with each other and are therefore
bundled together as the Java Runtime Environment.

Architecture of JVM: JVM has various sub components internally. You can
see all of them from the above diagram.

1. Class loader sub system: JVM's class loader sub system performs 3 tasks
a. It loads .class file into memory.
b. It verifies byte code instructions.
c. It allots memory required for the program.

2. Run time data area: This is the memory resource used by JVM and it is
divided into 5 parts

a. Method area: Method area stores class code and method code.

b. Heap: Objects are created on heap.

c. Java stacks: Java stacks are the places where the Java methods are
executed. A Java stack contains frames. On each frame, a separate method is
executed.

d. Program counter registers: The program counter registers store
memory address of the instruction to be executed by the micro processor.

e. Native method stacks: The native method stacks are places where
native methods (for example, C language programs) are executed. Native
method is a function, which is written in another language other than Java.

http://en.wikipedia.org/wiki/Java_Platform
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Write_once%2C_run_anywhere
http://en.wikipedia.org/wiki/Write_once%2C_run_anywhere
http://en.wikipedia.org/wiki/Write_once%2C_run_anywhere
http://en.wikipedia.org/wiki/Compiled_language
http://en.wikipedia.org/wiki/Compiled_language
http://en.wikipedia.org/wiki/Compiled_language
http://en.wikipedia.org/wiki/Automated_Exception_Handling
http://en.wikipedia.org/wiki/Automated_Exception_Handling
http://en.wikipedia.org/wiki/Automated_Exception_Handling
http://en.wikipedia.org/wiki/Exception_handling
http://en.wikipedia.org/wiki/Java_platform#Class_libraries
http://en.wikipedia.org/wiki/Application_Programming_Interface

12

%Wd-,d- a7/ W WA

Q.5.

Ans.:

, Class loader
Class files

sub system

_
Method Java PC atlve

Heap _ method
area stacks Registers
stacks

Runtime data areas

Execution Native Native

Engine 4mmmmmm—) method - method

interface library

JVM Architecture

3. Native method interface: Native method interface is a program that
connects native methods libraries (C header files) with JVM for executing
native methods.

4. Native method library: holds the native libraries information.

5. Execution engine: Execution engine contains interpreter and JIT compiler,
which covert byte code into machine code. JVM uses optimization technique
to decide which part to be interpreted and which part to be used with JIT
compiler. The HotSpot represents the block of code executed by JIT compiler.

What are the Fundamental JDK Tools?

These tools are the foundation of the JDK. They are the tools you use to create

and build applications.

Core Java Programming

13

Tool Name Brief Description

javac The compiler for the Java programming language.

java The launcher for Java applications. In this release, a single
launcher is used both for development and deployment. The
old deployment launcher, jre, is no longer provided.

javadoc API documentation generator. See Javadoc Tool page for
doclet and taglet APIs.

apt Annotation processing tool. See Annotation Processing Tool
for program annotation processing.

appletviewer |Run and debug applets without a web browser.

jar Create and manage Java Archive (JAR) files. See Java
Archive Files page for the JAR specification.

jdb The Java Debugger. See JPDA for the debugger architecture
specifications.

javah C header and stub generator. Used to write native methods.

javap Class file disassembler.

extcheck Utility to detect Jar conflicts.

http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/apt/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/index.html

Chapter-2

Language Features

Q.1

Ans.:

Explain data types in Java?
OR

How many primitive data types are there in Java?

The Java programming language is strongly-typed, which means that all
variables must first be declared before they can be used. This involves stating
the variable's type and name:

int gear = 1;

Doing so tells your program that a field named "gear" exists, holds numerical
data, and has an initial value of "1". A variable's data type determines the
values it may contain, plus the operations that may be performed on it. In
addition to int, the Java programming language supports seven other
primitive data types. A primitive type is predefined by the language and is
named by a reserved keyword. Primitive values do not share state with other
primitive values.

Core Java Programming 15

Data Type

/\

Non-Primitive

Primitive
/\ —— String
Boolean Numeric Array
A etC.
Character Integral
Integer Floating-point
v ﬂ\ /\

boolean char byte short int long float double

The eight primitive data types supported by the Java programming language

are :

Byte : The byte data type is an 8-bit signed two's complement integer.
It has a minimum value of -128 and a maximum value of 127
(inclusive).

Short : The short data type is a 16-bit signed two's complement integer.
It has a minimum value of -32,768 and a maximum value of 32,767
(inclusive). As with

Int : The int data type is a 32-bit signed two's complement integer. It
has a minimum value of -2,147,483,648 and a maximum value of
2,147,483,647 (inclusive). For integral values, this data type is generally
the default choice unless there is a reason (like the above) to choose
something else

Long : The long data type is a 64-bit signed two's complement integer.
It has a minimum value of -9,223,372,036,854,775,808 and a maximum

16

%Wd-,d- a7/ W WA

Q.2.

Ans.:

value of 9,223,372,036,854,775,807 (inclusive). Use this data type when
you need a range of values wider than those provided by int.

. Float : The float data type is a single-precision 32-bit IEEE 754 floating
point As with the recommendations for byte and short, use a float
(instead of double) if you need to save memory in large arrays of
floating point numbers. This data type should never be used for
precise values, such as currency.

. Double : The double data type is a double-precision 64-bit IEEE 754
floating point. For decimal values, this data type is generally the
default choice. As mentioned above, this data type should never be
used for precise values, such as currency.

. Boolean : The boolean data type has only two possible values: true and
false. Use this data type for simple flags that track true/false
conditions. This data type represents one bit of information, but its
"size" isn't something that's precisely defined.

. Char : The char data type is a single 16-bit Unicode character. It has a
minimum value of "\ u0000' (or 0) and a maximum value of "\ uffff' (or
65,535 inclusive).

In addition to the eight primitive data types listed above, the Java
programming language also provides special support for character strings via
the java.lang.String class.

Mention the different types of operators in Java?

Operators are special symbols that perform specific operations on one, two,
or three operands, and then return a result.

The operators in the following table are listed according to precedence order
Operators with higher precedence are evaluated before operators with
relatively lower precedence. Operators on the same line have equal
precedence. When operators of equal precedence appear in the same
expression, a rule must govern which is evaluated first. All binary operators
except for the assignment operators are evaluated from left to right;
assignment operators are evaluated right to left.

http://java.sun.com/javase/6/docs/api/java/lang/String.html

Core Java Programming

17

Operator Precedence

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ |
multiplicative */ %

additive +-

shift << >>>>>
relational <> <= >= instanceof
equality == =

bitwise AND &

Operators Precedence

bitwise exclusive OR || *

bitwise inclusive OR | |

logical AND &&

Operators Precedence

logical OR | |

ternary ?:

assignment

%Wd-,d- a7/ W WA

18
Q.3 Explain type Casting?
OR
What is the process of Automatic Type Conversion?
Ans.: It is sometimes necessary to convert a data item of one type to another type.

For example when it is necessary to perform some arithmetic using data items
of different types (so called mixed mode arithmetic). Under certain
circumstances Type conversion can be carried out automatically, in other
cases it must be "forced" manually (explicitly).

Automatic Conversion : In Java type conversions are performed
automatically when the type of the expression on the right hand side of an
assignment operation can be safely promoted to the type of the variable on
the left hand side of the assignment. Thus we can safely assign: byte -> short -
> int -> long -> float -> double

For example :

/ /64 bit long integer

long myLonglnteger;

/ /32 bit long integer

int mylInteger;
myLongInteger=mylnteger;

The extra storage associated with the long integer, in the above example, will
simply be padded with extra zeros.

Explicit Conversion (Casting) : The above will not work the other way
round. For example we cannot automatically convert a long to an int because
the first requires more storage than the second and consequently information
may be lost. To force such a conversion we must carry out an explicit
conversion (assuming of course that the long integer will fit into a standard
integer). This is done using a process known as a type cast: mylnteger = (int)
myLonglInteger.

This tells the compiler that the type of myLonglnteger must be temporarily
changed to a int when the given assignment statement is processed. Thus, the
cast only lasts for the duration of the assignment. Java type casts have the
following form: (T) N where T is the name of a numeric type and N is a data
item of another numeric type. The result is of type T.

Core Java Programming 19

Q4.

Ans.:

What are the basic control structures in Java?
OR
What are the different control constructs?
OR
Explain the looping constructs?
OR
Explain the conditional constructs?
OR
What is the functioning of ‘break and continue’ statements?
A Java program is a set of statements, which are normally executed
sequentially in the order in which they appear. However, in practice, we have
a number of situations, where we may have to change the order of execution

of statements based on certain conditions, or repeat a group of statements
until certain specified conditions are met.

Java language possesses decision making capabilities and supports the
following statements known as control or decision making statements :

(1) if statement : It allows the computer to evaluate the expression first
and then, depending on whether the value of the expression is ‘true’ or
‘false’.

The general form is :

if (test expression)
The if statement may be implemented in different forms :
a) Simple if statement

The general form is : if (test expression)

{

statement-block;

}

statement-x;
b) The if---else statement

The general form is : if(test expression)

{

20 %Wd-,d- a7/ W WA

true block statements;

}
else
{
false block statements;
}
statement-x;
C) Nested if---else statement
The general form is : if (test condition1)
{
if(test condition?2)
{
statement-1;
}
else
{
statement-2;
}

statement-x;
d) Else if ladder
The general form is : if (condition1)

statement-1;

else if (condition2)
statement-2;

else if (condition)
statement-n;

else
default-statement;

statement-x;

Core Java Programming 21

2 Switch Statement : When one of the many alternatives is to be
selected, we can design a program using if statements to control the
selection. However, when the number of alternatives increases, the
program becomes difficult to read and follow. Then we can use switch
statement in such situations.

The general form is :
Switch (expression)

{

case valuel:
block-1;
break;

case value-2:
block-2;
break;

default:
default-block;
break;
}

statement-x;

3) ? : operator :
The general form is :
Conditional expression ? expressionl:expression2
The process of repeatedly executing a block of statements is known as

looping. The statements in the block may be executed any number of times,

from zero to infinite number.

(@ The while statement : The simplest of all looping structures in Java is

the while statement.

22

%Wd-,d- a7/ W WA

The general format is :
Initialization;
while (test condition)

{
body of the loop

}

(b) The do statement : In this construct the body of the loop will execute
first and the test condition is evaluated.

Initialization;
do

{
body of the loop

}

while(test condition);

(c) The for statement : This is another entry-controlled loop like while
loop. The general format is:

For (initialization; test condition; increment/ decrement)

{
body of the loop

}

Jumps in Loops : Loops perform a set of operations repeatedly until the
control variable fails to satisfy the test condition. Sometimes, it becomes
desirable to skip a part of the loop or to leave the loop as soon as a certain
condition occurs.

Jumping out of a loop---We can use the break statement which will
immediately exited and the program continues with the statement
immediately following the loop.

e.g. while(.........)

if(condition)
break;

Core Java Programming 23

Skipping a part of loop---During the loop operation it may be necessary to
skip a part of the body of the loop under certain conditions. We can use
continue statement for this.

The statements below continue statement are skipped and control jumps to
header part of loop.

Chapter-3

Classes and Objects

Q.1.

Ans.:

What is an Object?

Objects are key to understanding object-oriented technology. Look around
right now and you'll find many examples of real-world objects: your dog,
your desk, your television set, your bicycle.

So, anything that exists in real world is an object. In other words an object is a
real life entity.

Real-world objects share two characteristics: They all have state and
behavior. Dogs have state (name, color, breed, hungry) and behavior
(barking, fetching, wagging tail). Bicycles also have state (current gear,
current pedal cadence, current speed) and behavior (changing gear, changing
pedal cadence, applying brakes). Identifying the state and behavior for real-
world objects is a great way to begin thinking in terms of object-oriented
programming.

Take a minute right now to observe the real-world objects that are in your
immediate area. You'll notice that real-world objects vary in complexity; your
desktop lamp may have only two possible states (on and off) and two
possible behaviors (turn on, turn off), but your desktop radio might have
additional states (on, off, current volume, current station) and behavior (turn
on, turn off, increase volume, decrease volume, seek, scan, and tune). You
may also notice that some objects, in turn, will also contain other objects.
These real-world observations all translate into the world of object-oriented
programming.

Core Java Programming 25

Methods Oiég Fields
{behavior) |:| D (state)
o

A software object.

Software objects are conceptually similar to real-world objects: they too
consist of state and related behavior. An object stores its state in fields
(variables in some programming languages) and exposes its behavior
through methods (functions in some programming languages). Methods
operate on an object's internal state and serve as the primary mechanism for
object-to-object communication. Hiding internal state and requiring all
interaction to be performed through an object's methods is known as data
encapsulation — a fundamental principle of object-oriented programming.

Consider a bicycle, for example:

0 rpm

5th gear
A bicycle modeled as a software object.

By attributing state (current speed, current pedal cadence, and current gear)
and providing methods for changing that state, the object remains in control
of how the outside world is allowed to use it. For example, if the bicycle only
has 6 gears, a method to change gears could reject any value that is less than 1
or greater than 6.

%Wd-,d- a7/ W WA

26
Q.2. Whatis a Class?
Ans.: In the real world, you'll often find many individual objects all of the same

kind.

All the objects that have similar properties and similar behaviour are grouped
together to form a class.

In other words we can say that a class is a user defined data type and objects
are the instance variables of class.

There may be thousands of other bicycles in existence, all of the same make
and model. Each bicycle was built from the same set of blueprints and
therefore contains the same components. In object-oriented terms, we say that
your bicycle is an instance of the class of objects known as bicycles. A class is the
blueprint from which individual objects are created.

The following Bicycle class is one possible implementation of a bicycle :
class Bicycle {
int cadence = 0;
int speed = 0;
int gear = 1;
void changeCadence(int new Value) {
cadence = newValue;
J
void changeGear(int newValue) {
gear = new Value;
)
void printStates() {

System.out.printIn("cadence:"+cadence+" speed:"+speed+" gear:"+gear);

}
}

The fields cadence, speed, and gear represent the object's state, and the
methods (changeCadence, changeGear, speedUp etc.) define its interaction
with the outside world.

You may have noticed that the Bicycle class does not contain a main method.
That's because it's not a complete application; it's just the blueprint for
bicycles that might be used in an application..

Core Java Programming 27

Here's a BicycleDemo class that creates two separate Bicycle objects and
invokes their methods :

class BicycleDemo {

public static void main(String[] args) {
// Create two different Bicycle objects
Bicycle bikel = new Bicycle();
Bicycle bike2 = new Bicycle();
// Invoke methods on those objects
bikel.changeCadence(50);
bikel.changeGear(2);
bikel.printStates();
bike2.changeCadence(50);
bike2.changeGear(2);
bike2.changeCadence(40);
bike2.changeGear(3);
bike2.printStates();

}

The output of this test prints the ending pedal cadence, speed, and gear for
the two bicycles:

cadence:50 speed:10 gear:2
cadence:40 speed:20 gear:3

Q.3. What do you mean by Garbage Collection?
OR

What do you mean by Memory Management in Java?
Or

How Memory Heaps are avoided by Garbage Collection Process?

Ans.: The name "garbage collection" implies that objects no longer needed by the
program are "garbage" and can be thrown away. A more accurate and up-to-
date metaphor might be "memory recycling." When an object is no longer
referenced by the program, the heap space it occupies can be recycled so that

http://java.sun.com/docs/books/tutorial/java/concepts/examples/BicycleDemo.java

28

%Wd-,d- a7/ W WA

Q4.

the space is made available for subsequent new objects. The garbage collector
must somehow determine which objects are no longer referenced by the
program and make available the heap space occupied by such unreferenced
objects. In the process of freeing unreferenced objects, the garbage collector
must run any finalizers of objects being freed.

In addition to freeing unreferenced objects, a garbage collector may also
combat heap fragmentation. Heap fragmentation occurs through the course
of normal program execution. New objects are allocated, and unreferenced
objects are freed such that free portions of heap memory are left in between
portions occupied by live objects. Requests to allocate new objects may have
to be filled by extending the size of the heap even though there is enough
total unused space in the existing heap. This will happen if there is not
enough contiguous free heap space available into which the new object will
fit. On a virtual memory system, the extra paging (or swapping) required to
service an ever growing heap can degrade the performance of the executing
program. On an embedded system with low memory, fragmentation could
cause the virtual machine to "run out of memory" unnecessarily.

Garbage collection relieves you from the burden of freeing allocated memory.
Knowing when to explicitly free allocated memory can be very tricky. Giving
this job to the Java virtual machine has several advantages. First, it can make
you more productive. When programming in non-garbage-collected
languages you can spend many late hours (or days or weeks) chasing down
an elusive memory problem. When programming in Java you can use that
time more advantageously by getting ahead of schedule or simply going
home to have a life.

A second advantage of garbage collection is that it helps ensure program
integrity. Garbage collection is an important part of Java's security strategy.
Java programmers are unable to accidentally (or purposely) crash the Java
virtual machine by incorrectly freeing memory.

A potential disadvantage of a garbage-collected heap is that it adds an
overhead that can affect program performance. The Java virtual machine has
to keep track of which objects are being referenced by the executing program,
and finalize and free unreferenced objects on the fly. This activity will likely
require more CPU time than would have been required if the program
explicitly freed unnecessary memory. In addition, programmers in a garbage-
collected environment have less control over the scheduling of CPU time
devoted to freeing objects that are no longer needed.

What do you mean by Static Members of a Class?

Core Java Programming 29

Ans.:

Q.5.

Ans.:

Static Members of Classes : In addition to (instance) members, a Java class
can include static members that are attached to the class rather than instances
of the class. We have already seen how static final fields provide a simple
way to define constants.

The static members of a class are not included in the template used to create
class instances. There is only one copy of a static field for an entire class--
regardless of how many instances of the class are created (possibly none).
Similarly, the code in a static method cannot refer to this or to the fields of
this because there is no class instance to serve as the receiver for such an
access. Of course, a static method can invoke an instance method (or extract
an instance field) of class if it explicitly specifies a receiver for the invocation.

Static methods are useful because we occasionally need to write methods
where the primary argument is either a primitive value or an object from a
class that we cannot modify. For example, the library method Integer.toString
(int i) converts an int to the corresponding String. Since an int is not an object,
there is no int class to hold such a method. Consequently, the Java library
provides a static method toString (int i) in the class Integer.

Finally, all operations on arrays must be expressed in static (procedural) form
because array types do not have conventional class definitions; they are built-
in to the Java virtual machine.

What do you mean by Wrapper Classes?

Wrapper classes are used to represent primitive values when an Object is
required. The wrapper classes are used extensively with Collection classes in
the java.util package and with the classes in the java.lang.reflect reflection
package.

Wrapper classes has the following features :

. One for each primitive type: Boolean, Byte, Character, Double, Float,
Integer, Long, and Short.

. Byte, Double, Float, Integer and Short extend the abstract Number
class.

. All are public final i.e. cannot be extended.

. Get around limitations of primitive types.

. Allow objects to be created from primitive types.

. All the classes have two constructor forms :

http://en.wikipedia.org/wiki/Object_type
http://java.sun.com/javase/6/docs/api/java/lang/Object.html
http://java.sun.com/javase/6/docs/api/java/util/Collection.html
http://java.sun.com/javase/6/docs/api/java/util/package-summary.html
http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html
http://en.wikipedia.org/wiki/Reflection_%28computer_science%29

30

%Wd-,d- a7/ W WA

. a constructor that takes the primitive type and creates an object
eg Character(char), Integer(int).

. a constructor that converts a String into an object eg
Integer("1"). Throws a NumberFormatException if the String
cannot be converted to a number.

NOTE : The character class does not have a constructor that takes a String
argument

Void:

All, except Character, have a valueOf(String s) method which is
equivalent to new Type(String s)

All have a typeValue() method which returns the value of the object as
it's primitive type. These are all abstract methods defined in Number
and overridden in each class

. public byte byteValue()

. public short shortValue()

. public int intValue()

. public long longValue()

. public float floatValue()

. public double doubleValue()

All the classes override equals(), hashCode() and toString() in Object

. equals() returns true if the values of the compared objects are
the same.
. hashCode() returns the same hashcode for objects of the same

type having the same value.
. toString() returns the string representation of the objects value.

All have a public static final TYPE field which is the Class object for that
primitive type.

All have two static fields MIN_VALUE and MAX_VALUE for the
minimum and maximum values that can be held by the type.

There is also a wrapper class for Void which cannot be instantiated.

NOTE : The constructors and methods described above do NOT exist for the
Void class although it does have the TYPE field.

Character :

Core Java Programming 31

Contains two methods for returning the numeric value of a character
in the various number systems :

. public static int digit(char ch, int radix)

. public static int getNumber(char ch)

And one method to return the character value of a number :
. public static char forDigit(int digit, int radix)

Has two case conversion methods :

. public static char toLowerCase(char ch)

. public static char toUpperCase(char ch)

Also contains a variety of other methods to test wether a character is of
a specific type eg isLetter(), isDefined(), isSpaceChar(), etc.

GetType() returns an int that defines a character's Unicode type.

Integer, Short, Byte and Long :

All have parseType methods eg parselnt(), parseShort(), etc that take a
String and parse it into the appropriate type.

The Integer and Long classes also have the static methods
toBinaryString(), toOctalString() and toHexString() which take an
integer value and convert it to the appropriate String representation.

Float and Double :

Both classes have static fields which define POSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN.

And the following methods to test a value :

. public boolean isNan()

. public static boolean isNaN(type value)

. public boolean isInfinite()

. public static boolean isInfinite(type value)

Float also has a constructor that takes a double value.

both classes have methods to convert a value into a bit pattern or vice
versa :

. public static int floatToIntBits(float value)
. public static float intBitsToFloat(int bits)
. public static long doubleToLongBits(double value)

32

%Wd-,d- a7/ W WA

public static double longBitsToDouble(long bits)

Chapter-4

String Handling

Q.1. What is string handling in java? Explain.
Ans.: Introduction: Strings, which are widely used in Java programming, are a

sequence of characters. In Java programming language, strings are treated as

objects.

Creating Strings

The most direct way to create a string is to write —

String greeting = "Hello world!";
Whenever it encounters a string literal in your code, the compiler creates a String

object with its value in this case, "Hello world!'.

As with any other object, you can create String objects by using the new keyword
and a constructor. The String class has 11 constructors that allow you to provide the

initial value of the string using different sources, such as an array of characters.

Example

public class StringDemo {
public static void main(String args|]) {
char[] helloArray = { 'h', '¢',1', 'l','0', .' };
String helloString = new String(helloArray);

System.out.println(helloString);

This will produce the following result —

34 %Wd-,d- a7/ W WA

Output
hello.

Note — The String class is immutable; so that once it is created a String object cannot
be changed. If there is a necessity to make a lot of modifications to Strings of

characters, then you should use String Buffer & String Builder Classes.
Creating a String object

String can be created in number of ways; here are a few ways of creating string

object.
1) Using a String literal

String literal is a simple string enclosed in double quotes " ". A string literal is

treated as a String object.

String strl = "Hello";

2) Using another String object
String str2 = new String(str1);

3) Using new Keyword

String str3 = new String("Java");

4) Using + operator (Concatenation)
String str4 = strl + str2;

or,

String str5 = "hello"+"Java";

Each time you create a String literal, the JVM checks the string pool first. If the

string literal already exists in the pool, a reference to the pool instance is returned.

https://www.tutorialspoint.com/java/java_string_buffer.htm

Core Java Programming 35

If string does not exist in the pool, a new string object is created, and is placed in
the pool. String objects are stored in a special memory area known as string

constant pool inside the heap memory.

String object and how they are stored

When we create a new string object using string literal, that string literal is added to

the string pool, if it is not present there already.

String str="Hello";

str

string object

Heap

And, when we create another object with same string, then a reference of the string

literal already present in string pool is returned.

String str2=str;

36 %W’@ S sk Fizrnke

str

string reference variable string object

str2

Heap

string reference variable

But if we change the new string, its reference gets modified.

str2=str2.concat("world");

str

string reference variable

"helloworld"

str2

string reference variable

Heap

Core Java Programming

37

Concatenating String

There are 2 methods to concatenate two or more string.

e Using concat() method

e Using + operator

1) Using concat() method
string s = "Hello";
string str = "Java';
string str2 = s.concat(str);

String strl = "Hello".concat("Java");

2) Using + operator
string str = "Rahul";
string strl = "Dravid";
string str2 = str + strl;

string st = "Rahul"+"Dravid";

/ /works with string literals too.

String Comparison

38 %Wd-,d- a7/ W WA

String comparison can be done in 3 ways.
e Using equals() method
e Using == operator
e By CompareTo() method
Using equals() method
equals() method compares two strings for equality. Its general syntax is,
boolean equals (Object str)

It compares the content of the strings. It will return true if string matches, else

returns false.

String s = "Hell";
String s1 = "Hello";
String s2 = "Hello";
sl.equals(s2); //true
s.equals(sl); //false
Using == operator

== operator compares two object references to check whether they refer to same

instance. This also, will return true on successful match.
String s1 = "Java';
String s2 = "Java";

String s3 = new string ("Java");

Core Java Programming 39

test(Sl==s2) //true
test(sl1 ==s3) //false
By compareTo() method

compareTo() method compares values and returns an int which tells if the string

compared is less than, equal to or greater than th other string. Its general syntax is,
int compareTo(String str)

To use this function you must implement the Comparable Interface. compareTo() is

the only function in Comparable Interface.
String s1 = "Abhi";

String s2 = "Viraaj';

String s3 = "Abhi";

sl.compareTo(S2); //return -1 because sl <s2
sl.compareTo(S3); //return 0 because s1 ==s3

s2.compareTo(sl); //return1 because s2 > sl

Q.2. What is an immutable object?
Ans.: An object whose state cannot be changed after it is created is known as an
Immutable object. String, Integer, Byte, Short, Float, Double and all other wrapper

class's objects are immutable.

Q.3. What is String Buffer Class? Explain.

Ans.: StringBuffer class is used to create a mutable string object. It represents
growable and writable character sequence. As we know that String objects are
immutable, so if we do a lot of changes with String objects, we will end up with a lot
of memory leak.

40 %Wd-,d- a7/ W WA

So StringBuffer class is used when we have to make lot of modifications to our
string. It is also thread safe i.e multiple threads cannot access it simultaneously.
StringBuffer defines 4 constructors. They are,

1. StringBulffer ()
2. StringBuffer (int size)
3. StringBuffer (String str)

StringBuffer (charSequence [|ch)StringBuffer() creates an empty string

buffer and reserves room for 16 characters.

stringBuffer(int size) creates an empty string and takes an integer argument

to set capacity of the buffer.

Example showing difference between String and StringBuffer

class Test {

public static void main(String args|])

{
String str = "study";
str.concat("tonight");

System.out.println(str); // Output: study

StringBuffer strB = new StringBuffer("study");

strB.append("tonight");
System.out.println(strB); // Output: studytonight

}

Core Java Programming 41

Q.4. What is String Builder Class?Explain.

Ans.: StringBuilder is identical to StringBuffer except for one important difference it
is not synchronized, which means it is not thread safe. Its because StringBuilder
methods are not synchronised.

StringBuilder Constructors

StringBuilder (), creates an empty StringBuilder and reserves room for 16
characters.StringBuilder (int size), create an empty string and takes an integer

argument to set capacity of the buffer.

1. StringBuilder (String str), create a StringBuilder object and initialize it with

string str.

Example of StringBuilder

class Test {

public static void main(String args[])

{
StringBuilder str = new StringBuilder("study");
str.append("tonight");
System.out.println(str);
str.replace(6, 13, "today");
System.out.println(str);

str.reverse();

System.out.println(str);

str.replace(6, 13, "today");

studytonight

studyttoday

yadottyduts

Chapter-5

Packages and Interfaces

Q.1.

Ans.:

What are Packages?

Introduction : Many times when we get a chance to work on a small project,
one thing we intend to do is to put all java files into one single directory. It is
quick, easy and harmless. However if our small project gets bigger, and the
number of files is increasing, putting all these files into the same directory
would be a problematic for us. In java we can avoid this sort of problem by
using Packages.

Packages are nothing more than the way we organize files into different
directories according to their functionality, usability as well as category they
should belong to.

Packaging also help us to avoid class name collision when we use the same
class name as that of others. For example, if we have a class name called
"Vector", its name would crash with the Vector class from JDK. However, this
never happens because JDK use java.util as a package name for the Vector
class (java.util.Vector). So our Vector class can be named as "Vector" or we
can put it into another package like com.mycompany.Vector without fighting
with anyone. The benefits of using package reflect the ease of maintenance,
organization, and increase collaboration among developers.

How to create a Package : Suppose we have a file called HelloWorld.java,
and we want to put this file in a package world. First thing we have to do is
to specify the keyword package with the name of the package we want to use

(world in our case) on top of our source file, before the code that defines the
real classes in the package, as shown in our HelloWorld class below :

package world;
public class HelloWorld {
public static void main(String[] args) {
System.out.printIn("Hello World");

}
}

Core Java Programming 43

One thing you must do after creating a package for the class is to create
nested subdirectories to represent package hierachy of the class. In our case,
we have the world package, which requires only one directory. So, we create
a directory world and put our HelloWorld java into it.

|J Address | Crarld [|

Falders X | | Hame | Size | Type

EI@ [c) ﬂ HeIIDWDrId.iava 1KB JAVA File
-3 .mce

-2 Diamond

|27 Found.000

F-] inetpub —
B0 Kpoms

B Multimedia Files

{27 My Download Files

20 My Music

B2 Program Files

----- '@ Recycled

-] Temp

|27 weblogic_publish

[:I--g Winnt

] wonld - {l |

|'I object(s] |245 bytes [Disk free space: 273ME] |g My Computer

=L

Q.2.

Ans.:

What are Interfaces?
OR

How do we implement multiple inheritance in ‘Java’?
OR

How do we declare and implement Interfaces?

Interfaces and Multiple Inheritance : Interfaces have another very important
role in the Java programming language. Interfaces are not part of the class
hierarchy, although they work in combination with classes. The Java
programming language does not permit multiple inheritance (inheritance is
discussed later in this lesson), but interfaces provide an alternative.

In Java, a class can inherit from only one class but it can implement more
than one interface. Therefore, objects can have multiple types: the type of
their own class and the types of all the interfaces that they implement. This
means that if a variable is declared to be the type of an interface, its value can
reference any object that is instantiated from any class that implements the
interface.

Defining an Interface: An interface declaration consists of modifiers, the
keyword interface, the interface name, a comma-separated list of parent
interfaces (if any), and the interface body. For example :

public interface GroupedInterface extends Interfacel,

44

%Wd-,d- a7/ W WA

Interface2, Interface3 {
// constant declarations
double E = 2.718282; // base of natural logarithms
// method signatures
void doSomething (int i, double x);
int doSomethingElse(String s);

}

The public access specifier indicates that the interface can be used by any
class in any package. If you do not specify that the interface is public, your
interface will be accessible only to classes defined in the same package as the
interface.

An interface can extend other interfaces, just as a class can extend or subclass
another class. However, whereas a class can extend only one other class, an
interface can extend any number of interfaces. The interface declaration
includes a comma-separated list of all the interfaces that it extends.

The Interface Body : The interface body contains method declarations for all
the methods included in the interface. A method declaration within an
interface is followed by a semicolon, but no braces, because an interface does
not provide implementations for the methods declared within it. All methods
declared in an interface are implicitly public, so the public modifier can be
omitted.

An interface can contain constant declarations in addition to method
declarations. All constant values defined in an interface are implicitly public,
static, and final. Once again, these modifiers can be omitted.

Implementing an Interface : To declare a class that implements an interface,
you include an implements clause in the class declaration. Your class can
implement more than one interface, so the implements keyword is followed
by a comma-separated list of the interfaces implemented by the class.

public interface Relatable

{
public int isLargerThan(Relatable other);

}

public class RectanglePlus implements Relatable {
public int width = 0;
public int height = 0;

Core Java Programming

45

public Point origin;

// four constructors

public RectanglePlus() {

origin = new Point(0, 0);

)

public RectanglePlus(Point p) {
origin = p;

}

public RectanglePlus(int w, int h) {
origin = new Point(0, 0);

width = w;

height = h;

)

public RectanglePlus(Point p, int w, int h) {

origin = p;
width = w;
height = h;

}

// amethod for moving the rectangle

public void move(int x, int y) {

origin.x = x;

origin.y =y;

}

// a method for computing the area of the rectangle

public int getArea() {

return width * height;

)

// amethod to implement Relatable

public int isLargerThan(Relatable other) {
RectanglePlus otherRect = (RectanglePlus)other;

%Wd-,d- a7/ W WA

46
if (this.getArea() < otherRect.getArea())
return -1;
else if (this.getArea() > otherRect.getArea())
return 1;
else
return 0;
}
}
Because RectanglePlus implements Relatable, the size of any two
RectanglePlus objects can be compared.
Q.4 Explain Inheritance with example?
Ans.: In the Java language, classes can be derived from other classes, thereby

inheriting fields and methods from those classes.

Definitions : A class that is derived from another class is called a subclass
(also a derived class, extended class, or child class). The class from which the
subclass is derived is called a superclass (also a base class or a parent class).

Excepting Object, which has no superclass, every class has one and only one
direct superclass (single inheritance). In the absence of any other explicit
superclass, every class is implicitly a subclass of Object.

Classes can be derived from classes that are derived from classes, and so on,
and ultimately derived from the topmost class, Object. Such a class is said to
be descended from all the classes in the inheritance chain stretching back to
Object.

The idea of inheritance is simple but powerful: When you want to create a
new class and there is already a class that includes some of the code that you
want, you can derive your new class from the existing class. In doing this,
you can reuse the fields and methods of the existing class without having to
write (and debug!) them yourself.

A subclass inherits all the members (fields, methods, and nested classes) from
its superclass. Constructors are not members, so they are not inherited by
subclasses, but the constructor of the superclass can be invoked from the
subclass.

The Java Platform Class Hierarchy : The Object class, defined in the
java.lang package, defines and implements behavior common to all classes —

Core Java Programming 47

including the ones that you write. In the Java platform, many classes derive
directly from Object, other classes derive from some of those classes, and so
on, forming a hierarchy of classes.

| Object

|

% I I
o ow J

All Classes in the Java Platform are Descendants of Object

At the top of the hierarchy, Object is the most general of all classes. Classes
near the bottom of the hierarchy provide more specialized behavior.

/*An Example of Inheritance*/

public class Bicycle {
// the Bicycle class has three fields
public int cadence;
public int gear;

public int speed;

// the Bicycle class has one constructor

public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;

}

// the Bicycle class has four methods

public void setCadence(int newValue) {

48

%Wd-,d- a7/ W WA

cadence = newValue;

}

public void setGear(int newValue) {
gear = new Value;

)

public void applyBrake(int decrement) {
speed -= decrement;

}

public void speedUp(int increment) {

speed += increment;

}

A class declaration for a MountainBike class that is a subclass of Bicycle might
look like this:

public class MountainBike extends Bicycle {
// the MountainBike subclass adds one field
public int seatHeight;
// the MountainBike subclass has one constructor

public MountainBike(int startHeight, int startCadence, int startSpeed, int
startGear) {

super(startCadence, startSpeed, startGear);
seatHeight = startHeight;
}
// the MountainBike subclass adds one method
public void setHeight(int newValue) {

seatHeight = newValue;

}

MountainBike inherits all the fields and methods of Bicycle and adds the field
seatHeight and a method to set it. Except for the constructor, it is as if you
had written a new MountainBike class entirely from scratch, with four fields

Core Java Programming 49

Q.5.

Ans.:

and five methods. However, you didn't have to do all the work. This would
be especially valuable if the methods in the Bicycle class were complex and
had taken substantial time to debug.

What are Abstract Methods and Classes?

Abstract Methods and Classes : An abstract class is a class that is declared
abstract —it may or may not include abstract methods. Abstract classes cannot
be instantiated, but they can be subclassed.

An abstract method is a method that is declared without an implementation
(without braces, and followed by a semicolon), like this :

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, the class itself must be declared abstract,
as in:

public abstract class GraphicObject {
// declare fields
// declare non-abstract methods
abstract void draw();

}

When an abstract class is subclassed, the subclass usually provides
implementations for all of the abstract methods in its parent class. However,
if it does not, the subclass must also be declared abstract.

When an Abstract Class Implements an Interface : A class that implements
an interface must implement all of the interface's methods. It is possible,
however, to define a class that does not implement all of the interface
methods, provided that the class is declared to be abstract. For example,

abstract class X implements Y {
// implements all but one method of Y
}
class XX extends X {
// implements the remaining method in Y

}

In this case, class X must be abstract because it does not fully implement Y,
but class XX does, in fact, implement Y.

%Wd-,d- a7/ W WA

50
Class Members : An abstract class may have static fields and static methods.
You can use these static members with a class reference—for example,
AbstractClass.staticMethod() —as you would with any other class.

Q.6. What are Final Classes and Methods?

Ans.: Writing Final Classes and Methods :

Final Methods : You can declare some or all of a class's methods final. You
use the final keyword in a method declaration to indicate that the method
cannot be overridden by subclasses. The Object class does this —a number of
its methods are final.

You might wish to make a method final if it has an implementation that
should not be changed and it is critical to the consistent state of the object. For
example, you might want to make the getFirstPlayer method in this
ChessAlgorithm class final :

class ChessAlgorithm {
enum ChessPlayer { WHITE, BLACK }

final ChessPlayer getFirstPlayer() {
return ChessPlayer WHITE;

}

Methods called from constructors should generally be declared final. If a
constructor calls a non-final method, a subclass may redefine that method
with surprising or undesirable results.

Final Variables : To prevent the subclasses from overrding the member
variables of the superclass, we can declare them as final using the final as a
modifier.

e.g. final int SIZE =55;

Core Java Programming 51

Final Classes : You can also declare an entire class final — this prevents the
class from being subclassed. This is particularly useful, for example, when
creating an immutable class like the String class. You can use final modifier
with class as follows :

e.g. final class A
}

Chapter-6

Exception Handling in Java

Q.1.

Ans.:

What is an Exception?
OR
Explain how Exceptions are handled using try-catch Block?
OR
What is a Finally Block?
The term exception is shorthand for the phrase "exceptional event."

Definition : An exception is an event, which occurs during the execution of a
program that disrupts the normal flow of the program's instructions.

When an error occurs within a method, the method creates an object and
hands it off to the runtime system. The object, called an exception object,
contains information about the error, including its type and the state of the
program when the error occurred. Creating an exception object and handing
it to the runtime system is called throwing an exception. After a method throws
an exception, the runtime system attempts to find something to handle it.

Some of the predefined exception classes are :
ArithmeticException,
ArrayIndexOutOfBoundException,
IOException etc.

The try Block : The first step in constructing an exception handler is to
enclose the code that might throw an exception within a try block. In general,
a try block looks like the following.

try {

code

Core Java Programming 53

catch and finally blocks . . .

The segment in the example labeled code contains one or more legal lines of
code that could throw an exception.

A catch Block : A catch block defined by the keyword catch “catches” the
exception “thrown” by the try block and handles it appropriately.The catch
block is added immediately after the try block.

The general form is :

try
{
statement;
}
catch(Exception type e)
{
statement;
}

Multiple catch Statements : It is possible to have more than one catch
statements in the catch block.

e.g.

statement;

}
catch(Exception-Type-1 e)

{

54

%Wd-,d- a7/ W WA

statement;
}
catch(Exception-Type-2 e)
{

statement;

catch(Exception -Type-N e)
{

statement;

Using Finally Statement : Java supports another statement known as finally
statement that can be used to handle an exception that is not caught by any of
the previous catch statements. Finally block can be used to handle any
exception generated within a try block. It may be immediately after the try
block or after the last catch block.

When a finally block is defined, this is guaranteed to execute, regardless of
whether or not in exception is thrown.

Throwing our own Exceptions : There may be times when we would like to
throw our own exceptions. We can do this by using the keyword throw as
follows :

throw new Throwable_subclass;

e.g. throw new Arithmetic Exception();

Chapter-7

/O In Java

Q.1.

Ans.:

What are Streams?
OR
What is the use of DataIlnputStream and DataOutputStream?

Java uses the concept of streams to represent the ordered sequence of data, a
common characteristic shared by all the input/output devices. A stream
presents a uniform, easy-to-use, object-oriented interface between the
program and the input/output devices.

A stream in Java is a path along which data flows. Both the source and the
destination may be physical devices or programs or other streams in the same
program.

The concept of sending data from one stream to another has made streams in
Java a powerful tool for file processing also.

Stream Classes : The java.io package contains a large number of stream
classes that provide capabilities for processing all types of data. These classes
may categorize into two groups based on the data type on which they
Ooperate.

(1) Byte Stream Classes : Provide support for handling I/ O operations on
bytes.

(2) Character Stream Classes : Provide support for managing 1/0
operations on characters.

Byte Stream Classes : ByteStream classes have been designed to provide
functional features for creating and manipulating streams and files for
reading and writing bytes. Since the streams are unidirectional, they can
transmit bytes in only one direction and, therefore, Java provides two kinds
of byte stream classes: input stream classes and output stream classes.

56

%Wd-,d- a7/ W WA

b)

This

Input Stream Classes : Input stream classes are that used to read 8-bit
bytes include a super class known as Input Stream and a number of
subclasses for supporting various input-related functions.

The InputStream class defines methods for performing input functions
such as :

. Reading bytes

. Closing streams

. Marking positions in streams

. Skipping ahead in a stream

. Finding the number of bytes in a stream

Some methods of InputStream are read(), skip(n),reset(), close() etc.

The class DatalnputStream extends FilterInput Stream and implements
the interface Datalnput. Therefore the DatalnputStream class
implements the methods described in Datalnput in addition to using
the methods of Input Stream class.

Some methods of DatalnputStream are readShort(), readInt(),
readLong(), readFloat(), readLine() etc.

Output Stream Classes : Output stream classes are derived from the
base class OutputStream. Like InputStream, the OutputStream is an
abstract class and therefore we cannot instantiate it.

The OutputStream includes methods that are designed to perform the
following tasks :

. Writing bytes

. Closing streams

. Flushing streams

Some methods of OutputStream are write(), close(), flush() etc.

The DataOutputStream, implements the interface DataOutput and
therefore implements methods like writeShort(), writeBytes(),
writelnt(), writeLong|() etc.

page shows you how to wuse the DatalnputStream and

DataOutputStream classes from java.io using an example, DatalOTest, that
reads and writes tabular data like this.

Core Java Programming 57

19.99 12 Java T-shirt
999 8 JavaMug

DataOutputStream, like other filtered output streams, must be attached to
some other OutputStream. In this case, its attached to a FileOutputStream set
up to write to a file on the file system named invoicel.txt.

DataOutputStream dos = new DataOutputStream(
new FileOutputStream("invoicel.txt"));

Next, DatalOTest uses DataOutputStream's specialized writeXXX() methods
to write the invoice data (contained within arrays in the program).

for (inti=0; i < prices.length; i ++) {
dos.writeDouble(pricesl[i]);
dos.writeChar('\t');
dos.writelnt(units|[i]);
dos.writeChar('\t');
dos.writeChars(descsli]);
dos.writeChar('\n');

}

dos.close();

Note that this code snippet closes the output stream when its finished. The
close() method flushes the stream before closing it.

Next, DatalOTest opens a DatalnputStream on the file just written :
DatalnputStream dis = new DatalnputStream(
new FileInputStream("invoicel.txt"));

DatalnputStream, like other filtered input streams, must be attached to some
other InputStream. In this case, its attached to a FileInputStream set up to
read from a file on the file system named invoicel.txt. DatalOTest then just
reads the data back in using DatalnputStream's specialized readXXX()
methods to read the input data into Java variables of the correct type.

while ('EOF) {
try {
price = dis.readDouble();
dis.readChar(); // throws out the tab

58

%Wd-,d- a7/ W WA

unit = dis.readInt();
dis.readChar(); // throws out the tab
desc = dis.readLine();

System.out.println("You've ordered " + unit + " units of " + desc + "at " +
price);
total = total + unit * price;
} catch (EOFException e) {
EOF = true;

}
System.out.println("For a TOTAL of: " + total);

dis.close();

When all of the data has been read, DatalOText displays a statement
summarizing the order and the total amount owed, and closes the stream.

Note the loop that DatalOTest uses to read the data from the
DatalnputStream. Normally, when reading you see loops like this:

while ((input = dis.readLine()) != null) {

}

The readLine() method returns some value, null, that indicates that the end of
the file has been reached.

CharacterStreamClasses : Character streams can be used to read and write
16-bit Unicode characters. There are two kinds of character stream classes,
namely, reader stream classes and writer stream classes.

a) Reader Stream Classes : Reader stream classes are designed to read
character from the files. Reader class is the base class for all other
classes. These classes are functionally very similar to the input stream
classes, except input streams use bytes as their fundamental unit of
information, while reader streams use characters.

The Reader class contains methods that are identical to those available
in the InputStream class, except Reader is designed to handle
characters.

b) Writer Stream Classes : Like output stream classes, the writer stream
classes are designed to perform all output operations on files. Only

Core Java Programming 59

Q.2.

Ans.:

difference is that while output stream classes are designed to write
bytes, the writer stream classes are designed to write characters.

The Writer class is an abstract class which acts as abase class for all the
other writer stream classes. This base class provides support for all
output operations by defining methods that are identical to those in
OutputStream class.

What do you mean by Serialization and Object Persistence?

Serialization involves saving the current state of an object to a stream, and
restoring an equivalent object from that stream. The stream functions as a
container for the object. Its contents include a partial representation of the
object's internal structure, including variable types, names, and values. The
container may be transient (RAM-based) or persistent (disk-based). A
transient container may be used to prepare an object for transmission from
one computer to another. A persistent container, such as a file on disk, allows
storage of the object after the current session is finished. In both cases the
information stored in the container can later be used to construct an
equivalent object containing the same data as the original.

For an object to be serialized, it must be an instance of a class that implements
either the Serializable or Externalizable interface. Both interfaces only permit
the saving of data associated with an object's variables. They depend on the
class definition being available to the Java Virtual Machine at reconstruction
time in order to construct the object. The Serializable interface relies on the
Java runtime default mechanism to save an object's state. Writing an object is
done via the writeObject() method in the ObjectOutputStream class (or the
ObjectOutput interface).

Sometimes you may wish to prevent certain fields from being stored in the
serialized object. The Serializable interface allows the implementing class to
specify that some of its fields do not get saved or restored. This is
accomplished by placing the keyword transient before the data type in the
variable declaration. In addition to those fields declared as transient, static

fields are not serialized (written out), and so cannot be deserialized (read
back in).

Adding object persistence to Java applications using serialization is easy.
Serialization allows you to save the current state of an object to a container,
typically a file. At some later time, you can retrieve the saved data values and
create an equivalent object. Depending on which interface you implement,
you can choose to have the object and all its referenced objects saved and
restored automatically, or you can specify which fields should be saved and

60

%Wd-,d- a7/ W WA

restored. Java also provides several ways of protecting sensitive data in a
serialized object, so objects loaded from a serialized representation should
prove no less secure than those classes loaded at application startup.

Chapter-8

AWT based effective GUI In Java

Q.1.

Ans.:

Q.2

Ans.:

Explain Delegation of Event Model?

The delegation event model came into existence with JDK1.1. In this model,
an event is sent to the component from which it originated. The component
registers a listener object with the program. The listener object contains
appropriate event-handlers that receive and process the events. e.g., when
you click a button, the action to be performed is handled by an object
registered to handle the button click event.

NOTE : By registering a listener object with the program, the component
enables the d elegation of events to the listener object for processing.

Every event has a corresponding listener interface that specifies the methods
that are required to handle the event. Event objects are sent to registered
listeners. To enable a component to handle events, you must register an
appropriate listener for it.

NOTE : When you use interfaces for creating listeners, the listener
class has to override all the methods that are declared in the interface. Some
of the interfaces have only one method, whereas others have many. Even if
you want to handle only one event, you have to override all the methods. To
overcome this, the event package provides seven adapter classes.

How do we implement Nesting of Classes?
OR

What are Inner Classes?

Nested Classes : The Java programming language allows you to define a
class within another class. Such a class is called a nested class and is illustrated
here :

class OuterClass {

62

%Wd-,d- a7/ W WA

Q.3.

Ans.:

class NestedClass {

Terminology : Nested classes are divided into two categories: static and non-
static. Nested classes that are declared static are simply called static nested
classes. Non-static nested classes are called inner classes.

class OuterClass {

static class StaticNestedClass {

}

class InnerClass {

}

A nested class is a member of its enclosing class. Non-static nested classes
(inner classes) have access to other members of the enclosing class, even if
they are declared private. Static nested classes do not have access to other
members of the enclosing class. As a member of the OuterClass, a nested class
can be declared private, public, protected, or package private. (Recall that outer
classes can only be declared public or package private.)

Reasons to use nested classes.

There are several compelling reasons for using nested classes, among them :

. It is a way of logically grouping classes that are only used in one place.
. It increases encapsulation.

. Nested classes can lead to more readable and maintainable code.

Core Java Programming 63

a) Logical Grouping of Classes : If a class is useful to only one other
class, then it is logical to embed it in that class and keep the two
together. Nesting such "helper classes" makes their package more

streamlined.

b) Increased Encapsulation : Consider two top-level classes, A and B,
where B needs access to members of A that would otherwise be
declared private. By hiding class B within class A, A's members can be
declared private and B can access them. In addition, B itself can be

hidden from the outside world.

c) More Readable, Maintainable Code : Nesting small classes within

top-level classes places the code closer to where it is used.

Static Nested Classes : As with class methods and variables, a static nested
class is associated with its outer class. And like static class methods, a static
nested class cannot refer directly to instance variables or methods defined in

its enclosing class — it can use them only through an object reference.

Note : A static nested class interacts with the instance members of its outer
class (and other classes) just like any other top-level class. In effect, a static
nested class is behaviorally a top-level class that has been nested in another

top-level class for packaging convenience.

Static nested classes are accessed using the enclosing class name:
OuterClass.StaticNestedClass

For example, to create an object for the static nested class, use this syntax:

OuterClass.StaticNestedClass nestedObject = new
OuterClass.StaticNestedClass();

Inner Classes : As with instance methods and variables, an inner class is
associated with an instance of its enclosing class and has direct access to that
object's methods and fields. Also, because an inner class is associated with an

instance, it cannot define any static members itself.

Objects that are instances of an inner class exist within an instance of the outer

class. Consider the following classes :

class OuterClass {

%Wd-,d- a7/ W WA

class InnerClass {

}

An instance of InnerClass can exist only within an instance of OuterClass and
has direct access to the methods and fields of its enclosing instance. The next

figure illustrates this idea.

Instance of
InnerClass

Instance of
OuterClass

An InnerClass Exists Within an Instance of OuterClass

To instantiate an inner class, you must first instantiate the outer class. Then,
create the inner object within the outer object with this syntax:

OuterClass.InnerClass innerObject = outerObject.new InnerClass();

Chapter-9

Applets

Q.1.

Ans.:

What are Applets?
OR
What are the advantages and disadvantages of Applet Programming?

A Java applet is an applet delivered in the form of Java bytecode. Java applets
can run in a Web browser using a Java Virtual Machine (JVM), or in Sun's
AppletViewer, a stand-alone tool for testing applets. Java applets were
introduced in the first version of the Java language in 1995. Java applets are
usually written in the Java programming language but they can also be
written in other languages that compile to Java bytecode such as Jython.

Applets are used to provide interactive features to web applications that
cannot be provided by HTML. Since Java's bytecode is platform independent,
Java applets can be executed by browsers for many platforms, including
Windows, Unix, Mac OS and Linux.There are open source tools like
applet2app which can be used to convert an applet to a stand alone Java
application/windows executable/linux executable. This has the advantage of
running a Java applet in offline mode without the need for internet browser
software.

Technical Information : Java applets are executed in a sandbox by most web
browsers, preventing them from accessing local data. The code of the applet
is downloaded from a web server and the browser either embeds the applet
into a web page or opens a new window showing the applet's user interface.
The applet can be displayed on the web page by making use of the
deprecated applet HTML element [1], or the recommended object element [2].
This specifies the applet's source and the applet's location statistics.

A Java applet extends the class java.applet.Applet, or in the case of a Swing
applet, javax.swing.JApplet. The class must override methods from the applet
class to set up a user interface inside itself (Applet is a descendant of Panel
which is a descendant of Container).

Advantages : A Java applet can have any or all of the following advantages :

66

%Wd-,d- a7/ W WA

It is simple to make it work on Linux, Windows and Mac OS i.e. to
make it cross platform.

The same applet can work on "all" installed versions of Java at the
same time, rather than just the latest plug-in version only. However, if
an applet requires a later version of the JRE the client will be forced to
wait during the large download.

It is supported by most web browsers.

It will cache in most web browsers, so will be quick to load when
returning to a web page but may get stuck in the cache and have issues
when new versions come out.

It can have full access to the machine it is running on if the user agrees.

It can improve with use: after a first applet is run, the JVM is already
running and starts quickly, benefitting regular users of Java but the
JVM will need to restart each time the browser starts fresh.

It can run at a comparable (but generally slower) speed to other
compiled languages such as C++, but many times faster than
JavaScript.

It can move the work from the server to the client, making a web
solution more scalable with the number of users/clients.

Disadvantages : A Java applet is open to any of the following disadvantages :

It requires the Java plug-in, which isn't available by default on all web
browsers.

an implementation of the Sun Java plug-in does not exist for 64-bit
processors.

It cannot start until the Java Virtual Machine is running, and this may
have significant startup time the first time it is used.

If untrusted, it has severely limited access to the user's system - in
particular having no direct access to the client's disk or clipboard.

Some organizations only allow software installed by the
administrators. As a result, many users cannot view applets by default.

Applets may require a specific JRE.

Core Java Programming 67

Q.2.

Ans.:

Q.3.

Ans.:

How communication is possible in between Applications?
OR
What do you mean by Inter Applet Communication?

Getting two or more applets within a single Web page to talk to each other
has some benefits. Although this applet capability has been around since the
earliest version of Java, it's not often used, because there's more emphasis
placed on getting applets to communicate with servers.

While this is understandable given the current fashion of client/server
programming, it's still a valuable skill for developers to learn. Another reason
the technique isn't used much is that complicated Web-borne applets are
usually shown in a single window. If there's a lot of information to show, the
designers simply make the applet larger.

However, in terms of Web page design, it's better in some cases to place small
bits of Java-based functionality in different parts of the page, leaving the rest
to be filled with text and images. To do this, you need multiple applet
windows that are, in some sense, part of the same program.

Method : The secret of inter-applet communication (which we'll abbreviate to
IAC) is the method AppletContext.getApplets(). This method provides us
with an Enumeration of all the applets running on the same page as the
calling applet. From this Enumeration, you can take actual Applet objects,
allowing you to freely call methods on it.

What we'll first give names to the applets on the page and then allow them to
send text strings to each other using the names as destinations.

Here's an API for this :

public void send(String appletName, String message);

protected String rcv();

the send() method sends a string to another applet with a given name;

the rcv() method returns the next string that has been sent to you.

Explain the life cycle of an Applet?

An applet can react to major events in the following ways :
. It can initialize itself.

. It can start running.

. It can stop running.

68

%Wd-,d- a7/ W WA

. It can perform a final cleanup, in preparation for being unloaded.
All applets have the following four methods :

public void init();

public void start();

public void stop();

public void destroy();

They have these methods because their superclass, java.applet.Applet, has
these methods.

In the superclass, these are simply do-nothing methods.

The init() method is called exactly once in an applet's life, when the applet is
tirst loaded. It's normally used to read PARAM tags, start downloading any
other images or media files you need, and set up the user interface. Most
applets have init() methods.

The start() method is called at least once in an applet's life, when the applet is
started or restarted. In some cases it may be called more than once. Many
applets you write will not have explicit start()methods and will merely inherit
one from their superclass. A start() method is often used to start any threads
the applet will need while it runs.

The stop() method is called at least once in an applet's life, when the browser
leaves the page in which the applet is embedded. The applet's start() method
will be called if at some later point the browser returns to the page containing
the applet. In some cases the stop() method may be called multiple times in
an applet's life. Many applets you write will not have explicit stop()methods
and will merely inherit one from their superclass. Your applet should use the
stop() method to pause any running threads. When your applet is stopped, it
should not use any CPU cycles.

The destroy() method is called exactly once in an applet's life, just before the
browser unloads the applet. This method is generally used to perform any
final clean-up. For example, an applet that stores state on the server might
send some data back to the server before it's terminated. many applets will
not have explicit destroy() methods and just inherit one from their superclass.

Core Java Programming 69

Q4.
Ans.:

How parameters are passed to Applets?

Passing Parameters to Applets : Parameters are passed to applets in
NAME=VALUE pairs in <PARAM> tags between the opening and closing
APPLET tags. Inside the applet, you read the values passed through the PARAM
tags with the getParameter() method of the java.applet.Applet class.

The program below demonstrates this with a generic string drawing applet.
The applet parameter "Message" is the string to be drawn.

import java.applet.*;
import java.awt.”;
public class DrawStringApplet extends Applet {
private String defaultMessage = "Hello!";
public void paint(Graphics g) {
String inputFromPage = this.getParameter("Message");
if (inputFromPage == null) inputFromPage = defaultMessage;
g.drawString(inputFromPage, 50, 25);
}
}

You also need an HTML file that references your applet. The following simple
HTML file will do :

<HTML>

<HEAD>

<TITLE> Draw String </TITLE>

</HEAD>

<BODY>

This is the applet:<P>

<APPLET code="DrawStringApplet" width="300" height="50">
<PARAM name="Message" value="Howdy, there!">

This page will be very boring if your browser doesn't understand Java.
</APPLET>

</BODY>

</HTML>

70

%Wd-,d- a7/ W WA

Of course you are free to change "Howdy, there!" to a "message" of your
choice. You only need to change the HTML, not the Java source code.
PARAMs let you customize applets without changing or recompiling the
code.

Howdy , There!

However rather than hardcoding the message to be printed it's read into the
variable inputFromPage from a PARAM element in the HTML.

You pass getParameter() a string that names the parameter you want. This
string should match the name of a PARAM element in the HTML page.
getParameter() returns the value of the parameter. All values are passed as
strings. If you want to get another type like an integer, then you'll need to
pass it as a string and convert it to the type you really want.

The PARAM element is also straightforward. It occurs between <APPLET>
and </APPLET>. It has two attributes of its own, NAME and VALUE.
NAME identifies which PARAM this is. VALUE is the string value of the
PARAM. Both should be enclosed in double quote marks if they contain
white space.

An applet is not limited to one PARAM. You can pass as many named
PARAMs to an applet as you like. An applet does not necessarily need to use
all the PARAMs that are in the HTML. Additional PARAMSs can be safely
ignored.

Chapter-10

Threading in Java

Q.1.

Ans.:

What is Multithreading?
OR

What are Threads and how are they implemented in Java?
OR

Explain various states of life cycle of a Thread?

Computer users take it for granted that their systems can do more than one
thing at a time. They assume that they can continue to work in a word
processor, while other applications download files, manage the print queue,
and stream audio. Even a single application is often expected to do more than
one thing at a time. For example, that streaming audio application must
simultaneously read the digital audio off the network, decompress it, manage
playback, and update its display.

The Java platform is designed from the ground up to support concurrent
programming, with basic concurrency support in the Java programming
language and the Java class libraries. Since version 5.0, the Java platform has
also included high-level concurrency APIs.

In concurrent programming, there are two basic units of execution: processes
and threads. In the Java programming language, concurrent programming is
mostly concerned with threads. However, processes are also important.

Processes : A process has a self-contained execution environment. A process
generally has a complete, private set of basic run-time resources; in particular,
each process has its own memory space.

Processes are often seen as synonymous with programs or applications.
However, what the user sees as a single application may in fact be a set of
cooperating processes. To facilitate communication between processes, most
operating systems support Inter Process Communication (IPC) resources, such
as pipes and sockets.

72

%Wd-,d- a7/ W WA

Threads : Threads are sometimes called lightweight processes. Both processes
and threads provide an execution environment, but creating a new thread
requires fewer resources than creating a new process.

Threads exist within a process — every process has at least one. Threads
share the process's resources, including memory and open files. This makes
for efficient, but potentially problematic, communication.

Multithreaded execution is an essential feature of the Java platform. Every
application has at least one thread — or several, if you count "system" threads
that do things like memory management and signal handling. But from the
application programmer's point of view, you start with just one thread, called
the main thread.

An application that creates an instance of Thread must provide the code that
will run in that thread. There are two ways to do this:

Provide a Runnable object. The Runnable interface defines a single method,
run, meant to contain the code executed in the thread. The Runnable object is
passed to the Thread constructor, as in the HelloRunnable example :

public class HelloRunnable implements Runnable {
public void run() {
System.out.printIn("Hello from a thread!");
}
public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

Subclass Thread : The Thread class itself implements Runnable, though its
run method does nothing. An application can subclass Thread, providing its
own implementation of run, as in the HelloThread example :

public class HelloThread extends Thread {
public void run() {

System.out.printIn("Hello from a thread!");

http://java.sun.com/javase/6/docs/api/java/lang/Runnable.html
http://java.sun.com/docs/books/tutorial/essential/concurrency/example/HelloRunnable.java
http://java.sun.com/docs/books/tutorial/essential/concurrency/example/HelloThread.java

Core Java Programming 73

public static void main(String args|]) {
(new HelloThread()).start();

}

Notice that both examples invoke Thread.start in order to start the new
thread.

The first idiom, which employs a Runnable object, is more general, because
the Runnable object can subclass a class other than Thread. The second idiom
is easier to use in simple applications, but is limited by the fact that your task
class must be a descendant of Thread.

The Thread class defines a number of methods useful for thread
management. These include static methods, which provide information
about, or affect the status of, the thread invoking the method. The other
methods are invoked from other threads involved in managing the thread
and Thread object.

Stopping a Thread : Whenever we want to stop a thread from running
further, we may do so by calling its stop() method which results in causing
thread to dead state.

Blocking a Thread : A thread can also be temporarily suspended or blocked
from entering into the runnable and subsequently running state by using
either of the following thread methods :

sleep() / /blocked for a specified time
suspend() / /blocked until further orders
wait() / /blocked until certain conditions occurs.

Life Cycle of a Thread : During the life time of a thread, there are many states
it can enter. They include :

(1) Newborn State : When we create a thread object, the thread is born
and is said to be in newborn state. The thread is not yet scheduled for
running.

(2) Runnable State : It means that the thread is ready for execution and is
waiting for the availability of the processor. That is , the thread has
joined the queue of threads that are waiting for execution.

74

%Wd-,d- a7/ W WA

Running State : It means that the processor has given its time to the
thread for its execution. The thread runs until it relinquishes control
(using suspend(), sleep(), or notify() Jon its own or it is preempted by a
higher priority thread.

Blocked State : A thread is said to be blocked when it is prevented
from entering into the runnable state and subsequently the running
state. This happens when the thread is suspended, sleeping, or waiting
in order to satisfy certain requirements.

Dead State : A running thread ends its life when it has completed
executing its run() method.It is a natural death. However we can kill it
by sending the stop message to it at any state thus causing a premature
death to it.

Chapter-11

Overview of Networking

Q.1.

Ans.:

Explain how socket based connectivity is useful in Client/Server
Applications?

In Client/Server applications, the server provides services like processing
database queries or modifying the data in the database. The communication
that occurs between the client and the server must be reliable. The data must
not be lost and must be available to the client in the same sequence in which it
was sent by the server.

Transmission control protocol(TCP) provides a reliable, point-to-point
communication channel for Client-Server applications to communicate with
each other. To communicate over TCP, client and server program establish a
connection and bind a socket. Sockets are used to handle the communication
links between applications over the network. Further communication
between the client and the server is through the socket.

The advantage of the socket model using TCP over other communication
models, such as NetBEUI and Apple Talk, is that the server is not affected by
the source of client requests. It services all requests, as long as the clients
follow the TCP/IP protocol suite. This means that the client can be any kind
of computer. No longer is the client restricted to the UNIX, Windows, DOS,
or Macintosh platforms. Therefore, all the computers in a network
implementing TCP/IP can communicate with each other through sockets.

Java was designed as a networking language. It makes network programming
easier by encapsulating connection functionality in the Socket classes, that is,
the Socket class to create a client socket and the Server Socket class to create a
server socket.

The different socket classes are outlined below :

Socket is the basic class that supports the TCP protocol. TCP is a stream
network connection protocol. The Socket class provides methods for stream
I/O, which makes reading from and writing to a socket easy. This class is
indispensable to the programs written to communicate on the Internet.

ServerSocket is a class used by the Internet server programs for listening to
client requests. ServerSocket does not actually perform the service; instead, it

76 %Wd-,d- EHoirnke ok
creates a Socket object on behalf of the client. The communication is
performed through the object created.

Q.2 Explain TCP/IP sockets and Datagram sockets.

Ans.: Client Server and Sockets :

+*

From a programmer's viewpoint, the Internet is the largest
client/server system implemented to date.

The Internet has well-defined protocols used between the clients and
the servers.

In fact the whole of the Internet is underpinned by just two protocols:
the Internet Protocol (IP) and the Transmission Control Protocol
(TCP).

One of the most important ways of implementing client server

applications is by using TCP/IP sockets.

Most high level programming languages and common OS’s now
support the use of sockets - though in this module we are largely
concerned with Java.

Introduction to Sockets :

+ ARPA funded the University of California at Berkeley to provide a
UNIX implementation of the TCP/IP protocol suite.

+ What was developed was termed the socket interface, although you
might hear it called the Berkeley -socket interface or just Berkeley
sockets. It was written in C.

+ Today, the socket interface is the most widely used method for
accessing a TCP/IP network.

+ A socket is nothing more than a convenient abstraction. It represents a
connection point into a TCP/IP network, devices communicate with
each other by sending or receiving data through a socket.

Sockets :

+ When two computers want to converse they can each use a socket.

Quite often, one computer is termed the server - this opens a socket
and listens for connections.

Core Java Programming 77

*

The other computer is termed the client; it calls the server socket to
start the connection. To establish a connection, all that's needed is a
destination address and a port number.

A port is a particular address on the server which is usually
represented as a simple integer value - 80 is the standard port for a
HTTP (web) server.

Each computer in a network has a unique IP address. Ports represent
individual connections within that address.

Socket Transmission Modes :

+*

*

Sockets have two major modes of operation: connection-oriented and
connectionless.

Connection-oriented sockets use TCP/IP and operate like a telephone;
they must establish a connection and a hang up. Everything that flows
between these two

events arrives in the same order it was sent.

Connectionless sockets operate like the postal service and delivery is
not guaranteed. Multiple pieces of mail may arrive in a different order
than they were sent.

Which mode to use is determined by an application's needs. Some
applications, such as a time server, don’t really need reliability of
delivery. Many other applications however do require guaranteed
delivery.

UDP and Datagram Sockets :

+*

+*

Connectionless operation uses the User Datagram Protocol (UDP).
Like TCP, UDP runs on top of IP.

A datagram is a self- contained unit that has all the information
needed to attempt its delivery.

A socket in this mode does not need to connect to a destination socket;
it simply sends the datagram to the destination and keeps its fingers
crossed.

The UDP protocol promises only to make a best-effort delivery
attempt. Connectionless operation is fast and efficient, but not
guaranteed.

UDP is often used in streaming video and audio data to one or more
destinations (called multicast).

78

%Wd-,d- a7/ W WA

TCP/IP Sockets :

* Connection-oriented operation uses the Transport Control Protocol
(TCP).

+ A socket in this mode needs to connect to the destination before
sending data.

+ Once connected, the sockets are accessed using a streams interface:
open-read -write-close.

+ Everything sent by one socket is received by the other end of the
connection in exactly the same order it was sent. If any errors occur,
then TCP can request that packets are resent, ensuring 100% data
reliability.

* Connection-oriented operation is slower than connectionless, but it is

guaranteed.

onoo

Chapter-12

Java Database Connectivity

Q.1.

Ans.:

Explain JDBC Architecture?

JDBC Architecture : The JDBC API supports both two-tier and three-tier
processing models for database access.

Two-tier Architecture for Data Access :

In the two-tier model, a Java

Java Application Clidit Machine application talks directly to
JDBC the data source. This requires
a JDBC driver that can

DBEMS - proprietary protocol . .
communicate with the
Do rver particular data source being
oo DBMS accessed. A user's commands

are delivered to the database
or other data source, and the results of those statements are sent back to the
user. The data source may be located on another machine to which the user is
connected via a network. This is referred to as a client/server configuration,
with the user's machine as the client, and the machine housing the data
source as the server. The network can be an intranet, which, for example,
connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services,
which then sends the commands to the data source. The data source
processes the commands and sends the results back to the middle tier, which
then sends them to the user. MIS directors find the three-tier model very
attractive because the middle tier makes it possible to maintain control over
access and the kinds of updates that can be made to corporate data. Another
advantage is that it simplifies the deployment of applications. Finally, in
many cases, the three-tier architecture can provide performance advantages.

Three-tier Architecture for Data Access :

Until recently, the middle tier has often been written in languages such as C
or C++, which offer fast performance. However, with the introduction of
optimizing compilers that translate Java bytecode into efficient machine-
specific code and technologies such as Enterprise JavaBeans™, the Java

80

%Wd-,d- a7/ W WA

Q.2.

Ans.:

platform is fast becoming the standard platform for middle-tier development.
This is a big plus, making it possible to take advantage of Java's robustness,
multithreading, and security features.

Java applet or

HIML b wser Client machine { GUI)

: HTTP, RML, CORBA, or other calls

Application Server Server hine
Java) {business logic)

JDBC

DBMS - proprietary protocol

Database server

With enterprises increasingly using the Java programming language for
writing server code, the JDBC APl is being used more and more in the middle
tier of a three-tier architecture. Some of the features that make JDBC a server
technology are its support for connection pooling, distributed transactions,
and disconnected rowsets. The JDBC API is also what allows access to a data
source from a Java middle tier.

What do you understand by JDBC API?

Java Database Connectivity (JDBC) is an API for the Java programming
language that defines how a client may access a database. It provides
methods for querying and updating data in a database. JDBC is oriented
towards relational databases.

The Java 2 Platform, Standard Edition, version 1.4 (J2SE) includes the JDBC
3.0 API[1] together with a reference implementation JDBC-to-ODBC Bridge,
enabling connections to any ODBC-accessible data source in the JVM host
environment. This Bridge is native code (not Java), closed source, and only
appropriate for experimental use and for situations in which no other driver is
available.

Overview : JDBC has been part of the Java Standard Edition since the release
of JDK 1.1. The JDBC classes are contained in the Java package java.sql.
Starting with version 3.0, JDBC has been developed under the Java
Community Process. JSR 54 specifies JDBC 3.0 (included in J2SE 1.4), JSR 114

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Java_Platform%2C_Standard_Edition
http://java.sun.com/products/jdbc/jdbc-3_0-fr-spec-license.html
http://en.wikipedia.org/wiki/Open_database_connectivity
http://en.wikipedia.org/wiki/Native_code
http://en.wikipedia.org/wiki/Closed_source
http://en.wikipedia.org/wiki/Java_package
http://java.sun.com/javase/6/docs/api/java/sql/package-summary.html
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/Java_Community_Process
http://en.wikipedia.org/wiki/Java_Community_Process

Core Java Programming 81

specifies the JDBC Rowset additions, and JSR 221 is the specification of JDBC
4.0.

JDBC allows multiple implementations to exist and be used by the same
application. The API provides a mechanism for dynamically loading the
correct Java packages and registering them with the JDBC Driver Manager.
The Driver Manager is used as a connection factory for creating JDBC
connections.

JDBC connections support creating and executing statements. These may be
update statements such as SQL's CREATE, INSERT, UPDATE and DELETE,
or they may be query statements such as SELECT. Additionally, stored
procedures may be invoked through a JDBC connection. JDBC represents
statements using one of the following classes :

. Statement - the statement is sent to the database server each and every
time.
. PreparedStatement - the statement is cached and then the execution

path is pre determined on the database server allowing it to be
executed multiple times in an efficient manner.

. CallableStatement - used for executing stored procedures on the
database.

Update statements such as INSERT, UPDATE and DELETE return an update
count that indicates how many rows were affected in the database. These
statements do not return any other information.

Query statements return a JDBC row result set. The row result set is used to
walk over the result set. Individual columns in a row are retrieved either by
name or by column number. There may be any number of rows in the result
set. The row result set has metadata that describes the names of the columns
and their types.

There is an extension to the basic JDBC API in the javax.sql package that
allows for scrollable result sets and cursor support among other things.

Example : The method Class.forName(String) is used to load the JDBC driver
class.

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Stored_procedures
http://en.wikipedia.org/wiki/Stored_procedures
http://en.wikipedia.org/wiki/Stored_procedures
http://java.sun.com/javase/6/docs/api/java/sql/Statement.html
http://java.sun.com/javase/6/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/javase/6/docs/api/java/sql/CallableStatement.html
http://en.wikipedia.org/wiki/Stored_procedures
http://java.sun.com/javase/6/docs/api/javax/sql/package-summary.html
http://java.sun.com/javase/6/docs/api/java/lang/Class.html#forName(java.lang.String)

Chapter-13

JavaScript Fundamentals

Q.1.

Ans.:

How can you work with the frames in Java Script?

Some browsers (including the latest Netscape and Microsoft browsers)
support frames, which enable you to divide the browser window into multiple
panes. Each frame can contain a separate URL or the output of a script.

Using JavaScript Objects for Frames : When a window contains multiple
frames, each frame is represented in JavaScript by a frame object. This object
is equivalent to a window object, but it is used for dealing with that frame.
The frame object's name is the same as the NAME attribute you give it in the
<frame> tag.

Keyword, parent, enables you to refer to the main window.

Each frame object in a window is a child of the parent window object.
Suppose you define a set of frames using the HTML below:

<frameset ROWS="**" COLS="**">

<frame NAME="topleft" SRC="topleft.htm">
<frame NAME="topright" SRC="topright.htm">
<frame NAME="bottomleft" SRC="botleft.htm">
<frame NAME="bottomright" SRC="botright.htm">
</frameset>

This simply divides the window into quarters. If you have a JavaScript
program in the topleft.htm file, it would refer to the other windows as
parent.topright, parent.bottomleft, and so on. The keywords window and self
would refer to the topleft frame.

Note : If you use nested framesets, things are a bit more complicated. window
still represents the current frame, parent represents the frameset containing
the current frame, and top represents the main frameset that contains all the
others.

The Frames Array : Rather than referring to frames in a document by name,
you can use the frames array. This array stores information about each of the

Core Java Programming 83

Q.2.

Ans.:

frames in the document. The frames are indexed starting with zero and
beginning with the first <frame> tag in the frameset document.

For example, you could refer to the frames defined in the previous example
using array references :

. parent.frames[0] is equivalent to the topleft frame.

. parent.frames|[1] is equivalent to the topright frame.

. parent.frames|[2] is equivalent to the bottomleft frame.

. parent.frames[3] is equivalent to the bottomright frame.

You can refer to a frame using either method interchangeably, and depending
on your application, you should use the most convenient method. For
example, a document with 10 frames would probably be easier to use by
number, but a simple two-frame document is easier to use if the frames have
meaningful names.

What do you understand by Document Object Model?

One advantage that JavaScript has over basic HTML is that scripts can
manipulate the Web document and its contents. Your script can load a new
page into the browser, work with parts of the browser window and
document, open new windows, and even modify text within the page
dynamically.

To work with the browser and documents, JavaScript uses a hierarchy of
parent and child objects called the Document Object Model, or DOM. These
objects are organized into a tree-like structure, and represent all of the content
and components of a Web document.

Like other objects you've explored, the objects in the DOM have properties,
which describe the Web page or document, and methods, which allow you to
work with parts of the Web page.

When you refer to an object, you use the parent object name followed by the
child object name or names, separated by periods. For example, JavaScript
stores objects to represent images in a document as children of the document
object. For instance, the following refers to the image9 object, a child of the
document object, which is a child of the window object:

window.document.image9
The window object is the parent object for all the objects.

DOM Levels : The W3C (World-Wide Web Consortium) has recently
developed the DOM level 1 standard. This standard defines not only basic

%Wd-,d- a7/ W WA

84
objects, but an entire set of objects that encompass all parts of an HTML
document. A level 2 DOM standard is also under development.
The basic object hierarchy is informally referred to as DOM level 0, and the
objects are included in the DOM level 1 standard.
The Level 1 and Level 2 DOM objects allow you to modify a Web page in real
time after it has loaded. This is called dynamic HTML (DHTML).

Q.3. How can you create Interactive Forms in Java Script?

Ans.: Using the ‘form’ Object with JavaScript : Each form in your HTML page is

represented in JavaScript by a form object, which has the same name as the
NAME attribute in the <form> tag you used to define it.

Alternately, you can use the forms array to refer to forms. This array includes
an item for each form element, indexed starting with 0. For example, if the
first form in a document has the name form1, you can refer to it in one of two
ways:

document.form1

document.forms|0]

The ‘form” Object's Properties : Along with the elements, each form object
also has a list of properties, most of which are defined by the corresponding
<form> tag. You can also set these from within JavaScript. They include the
following :

. Action is the form's ACTION attribute, or the program to which the
form data will be submitted.

. Encoding is the MIME type of the form, specified with the ENCTYPE
attribute. In most cases, this is not needed.

. Length is the number of elements in the form. You cannot change this
property.

. Method is the method used to submit the form, either GET or POST.

. Target specifies the window in which the result of the form (from the

CGI script) will be displayed. Normally, this is done in the main
window, replacing the form itself.

Submitting and Resetting Forms : The form object has two methods, submit
and reset. You can use these methods to submit the data or reset the form
yourself, without requiring the user to press a button. One reason for this is to

Core Java Programming 85

Q4.

Ans.:

submit the form when the user clicks an image or performs another action
that would not usually submit the form.

Note : If you use the submit method to send data to a server or by email,
Netscape will prompt the user to verify that she wants to submit the
information. There's no way to do this behind the user's back.

Detecting Form Events : The form object has two event handlers, onSubmit
and onReset. You can specify a group of JavaScript statements or a function
call for these events within the <form> tag that defines the form.

If you specify a statement or function for the onSubmit event, the statement is
called before the data is submitted to the CGI script. You can prevent the
submission from happening by returning a value of false from the onSubmit
event handler. If the statement returns true, the data will be submitted. In the
same fashion, you can prevent a Reset button from working with an onReset
event handler.

Scripting Form Elements : The most important property of the form object is
the elements array, which contains an object for each of the form elements.
You can refer to an element by its own name or by its index in the array. For
example, the following two expressions both refer to the first element in the
order form, the namel text field:

document.order.elements|[0]

document.order.namel

Explain how Cookies are implemented in Java Script?
OR
What are Cookies?

Cookies : Cookies were originally invented by Netscape to give 'memory' to
web servers and browsers. The HTTP protocol, which arranges for the
transfer of web pages to your browser and browser requests for pages to
servers, is state-less, which means that once the server has sent a page to a
browser requesting it, it doesn't remember a thing about it. So if you come to
the same web page a second, third, hundredth or millionth time, the server
once again considers it the very first time you ever came there.

This can be annoying in a number of ways. The server cannot remember if
you identified yourself when you want to access protected pages, it cannot
remember your user preferences, it cannot remember anything. As soon as
personalization was invented, this became a major problem.

86

%Wd-,d- a7/ W WA

Q.5

Ans.:

Cookies were invented to solve this problem. There are other ways to solve it,
but cookies are easy to maintain and very versatile.

How Cookies work : A cookie is nothing but a small text file that's stored in
your browser. It contains some data :

1) A name-value pair containing the actual data
2 An expiry date after which it is no longer valid
(€)) The domain and path of the server it should be sent to

As soon as you request a page from a server to which a cookie should be sent,
the cookie is added to the HTTP header. Server side programs can then read
out the information and decide that you have the right to view the page you
requested or that you want your links to be yellow on a green background.

So every time you visit the site the cookie comes from, information about you
is available. This is very nice sometimes, at other times it may somewhat
endanger your privacy. Fortunately more and more browsers give you the
opportunity to manage your cookies.

Write the procedure to create Custom Java Script Objects?

How to create your own basic Object : Creating an object requires two steps:

. First, declare the object by using an object function.
. Lastly, instantiate the newly created object by using the "new"
keyword.

Lets take this one step at a time. We will now proceed to create an object
called "userobject", which, at this stage, does nothing :

Step 1 : Declare the object by using an object function

The first step towards creating an object requires us to define an object
function. An object function is virtually identical in syntax as a regular
function, although there are some differences which will surface later on. The
object function is used to define and declare an object :

function userobject(parameter){

)

The parameter is optional, and with it, allows us to pass in values to an object.
For example, in the pre-built object window.alert, the parameter is the text
passed in to be alerted. Now, with just the above object function, we have in
essence just created a new object called "userobject"! It does nothing at this

http://www.javascriptkit.com/javatutors/object2.shtml

Core Java Programming 87

stage, and will continue to do until we add in properties and methods. To use
this object, all we have to do is instantiate it, by using the keyword "new".

Step 2 : Instantiate the newly created object by using the "new" keyword

Once we've defined an object function, we have to instantiate it to actually
use it. Instantiating an object function means using the keyword "new" in
front of the object name, and then creating an instance of the object by
assigning it to a variable :

<script type="text/javascript">

function userobject(parameter){

)

/ /myobject is now an object of type userobject!

var myobject=new userobject("hi")

</script>

"myobject" is now an object...an instance of "userobject", to be exact.

If you're a little confused at this stage, consider a more familiar example :
var imagel=new Image(20,20)

The above should be review to us; we created an instance of the pre-built
image object by assigning it to the variable imagel. Well, this familiar process
is exactly what we'll doing with the custom object above.

If you're the kind that need to actually see and touch an object before you
believe its an object, the window.alert method can help :

<script type="text/javascript">

function userobject(parameter)
{ JavaScnpt Alert;
} [object Object]

/ /myobject is now an object of type userobject!

var myobject=new userobject("hi")
alert(myobject)
</script>

How to add properties to your own Object : Thus far, our object "userobject"
cannot do anything but take up space in a document. With some properties,
that should all change. To add properties to a user defined object, directly
embed the properties into the object function, with each property proceeded

http://www.javascriptkit.com/javatutors/object2.shtml
http://www.javascriptkit.com/javatutors/object2.shtml
http://www.javascriptkit.com/javatutors/object2.shtml
http://www.javascriptkit.com/javatutors/object2.shtml

88

%Wd-,d- a7/ W WA

by the keyword "this" plus dot (.): In the below example, we'll extend
"userobject" to contain two properties, each containing a string of text:

function userobject(parameter){

this firstproperty=parameter
this.secondproperty="This is the second property"
}

Now, to use these properties, simply access them like accessing any other
property:

<script>

var myobject=new userobject("hi there.")

/ /alerts "hi there."

alert(myobiject.firstproperty)

/ /writes "This is the second property"
document.write(myobject.secondproperty)

</script>

How to add methods to your own object : Adding methods to a user defined
object is a bit more complicated. We need to first declare and define a
function for each method, then associate this function with the object
function. For the sake of simplicity, we will simply call functions defined for
methods "method functions." Lets get a clean start, and create a new object
called "circle" that will contain methods that compute the area and diameter
of a circle, respectively.

The first step to adding methods is to implement the method functions.
Method functions define what a method does :

/ /first method function

function computearea(){

var area=this.radius*this.radius*3.14
return area

}

/ /second method function

function computediameter(){

http://www.javascriptkit.com/javatutors/object4.shtml

Core Java Programming 89

var diameter=this.radius*2
return diameter

}

In the above case, we've created two method functions, "computearea" and
"computediamter", which calculates various aspects of a circle. The two
functions, as you can see, are just functions, with one major distinction. Take
the first one, for example :

function computearea(){
var area=this.radius*this.radius*3.14
return area

this.radius looks like a property of a custom object to me. Since a method
function will eventually be connected to the custom object, it has access to the
properties of the object. We haven't defined the properties yet, but we will,
and the method functions will use them in its calculation.

We will now associate the two method functions above to the new object
"circle", so they become methods of the object :

<script type="text/javascript">

/*the below creates a new object, and gives it the two methods defined
earlier*/

function circle(r){

/ / property that stores the radius
this.radius=r
this.area=computearea
this.diameter=computediameter
J

</script>

Finally, to use these methods, instantiate the object, and access the methods
just like any other method :

<script type="text/javascript">
var mycircle=new circle(20)

/ /alerts 1256

http://www.javascriptkit.com/javatutors/object4.shtml
http://www.javascriptkit.com/javatutors/object4.shtml

90

%Wd-,d- a7/ W WA

alert("area="+mycircle.area())
/ /alerts 400
alert("diameter="+mycircle.diameter())

</script>

Core Java Programming 91

BACHELOR OF COMPUTER APPLICATIONS

(Part IIT) EXAMINATION
(Faculty of Science)
(Three - Year Scheme of 10+2+3 Pattern)
PAPER 318
Internet Application Development

OBJECTIVE PART- |

[[Year -2011]]

Time allowed : One Hour Maximum Marks : 20

The question paper contains 40 multiple choice questions with four choices and

students will have to pick the correct one. (Each carrying % marks.).

1.

To view web pages you need:
@) Browser

() www
() TCP/IP
(d) All of the above ()

Live communication on the internet can be done using:

(@) E-mail

(b) Newsgroups

(c) IRC

(d) None of the above ()

The protocol that web clients and servers use to communicate with each other is
called:

(@) HTML

(b) HTTP

(c) URL

(d) None of the above ()

Web documents are stores as text files with the extension:
@) .htm
(b) .html

%Wd-,d- a7/ W WA

92

(c) both (a) and (b)

(d) none of the above ()
5. What of the following is a Search Engine?

€)) Microsoft (b) Yahoo

(© Alta Vista (d) Both (b) and (c)

(e) Google ()
6. What will be the result of the following

@ 38

(b) 25

(© 9

d 12 ()
7. A package is a collection of :

@ Classes

(b) Interfaces

(© Editing tools

(d) Classes and interfaces ()
8. The methods wait 9 () and notify () are defined in:

@) java. lang. string

(b) java. lang. runnable

(©) java . lang. object

(d) java. lang. thread ()
9. Which of the following methods belongs to the string class?

€)) length ()

(b) comperato ()

(© equals ()

(d) All of the above ()
10. Which exception is thrown by the read () method of input stream class?

@ Exception

(b) IO exception

(c) File not found exception

(d) None of the above

()

11. GUI stands for:

@ Graphical Unique Interface

(b) Graphical User Interface

(c) Graphical User Information

(d) None of the above ()
12. Which not a wrapper class?

Core Java Programming

13.

14.

15.

16.

17.

18.

19.

@) Random

(b) Byte
(c) Integer
(d) Short

Internet e-mail is based on standards, known is:
@) Protocols

(b) Networks

(c) Both (a) and (b)

(d) None of the above

The FTP is a member protocol of the............. suite.
@ HTTP

(b) TCP/IP

(c) SMTP

(d) None of the above

HTML tags are enclosed in:
@ Angle brackets

(b) Parenthesis

(© Curly braces

(d) None of the above

Links are also known is:
@) Anchors

(b) Hotspots

(© Both (a) and (b)
(d) None of the above

Which of the case statement?
@) If...... else statement
(b) switch statement

(©) Loop statement

(d) None of the above

Which object provides a list of the URL?
@ Event object

(b) History object

(©) Location object

(d) Both (b) and (c)

Which methods appends a value to the end of an array?
(@ join()

(b) push ()

() pop()

()

()

()

()

()

()

()

%Wd-,d- a7/ W WA

9

(d) none of the above ()
20. Which event occurs when the user presents the mouse button?

@ onfocus

(b) onchange

(© onblur

(d) None of the above ()
21. CSS stands for:

@ Casading style sheet

(b) Client style sheet

(© Current style sheet

(d) None of the above ()
22. The data from teh database on the server is displayed in the table in DHTML, this

features is called:

@ Data inheritance

(b) Data binding

(© Data collection

(d) None of the above ()
23. The STYLE attributes is used to apply style sheet to...............

@) More than two elements

(b) Individual elements

(© Whole document elements

(d) None of the above ()
24. Variant data type contain:

(@ Empty

(b) Boolean

(©) Byte

(d) All of the above ()
25. Which keyword is used to stop the current execution of the loop?

€)) Switch

(b) If

(©) Break

(d) Both (a) and (c) ()
26. Which button provides an interface to select an option among the multiple choices?

@ Radio Button

(b) Check Button

(© List Button

(d) Control Button ()

Core Java Programming 95
27. Which is the example of web browser?

@ Java

(b) C++&C

(© Netscape Navigator

(d) Both () and (b) ()
28. JDBC is known as:

@ Java Database Client

(b) Java Database Connection

(© Java Database Current

(d) Java Database connectivity ()
29. AWT stands for:

@ Advance Window Terminator

(b) Active Window Time

(© Advance Windowing toolkit

(d) Advance Window Toolkit
30. Full form of API is:

@ Applet Programming Interface

(b) Application programming Integer

(©) Application Programming Interface

(d) Applet programming Integer ()
31. Which of the Java debugger?

@ JDBC or jdbc (b) JDK or jdk

(© JDB or jdb (d) None of the above ()
32. Full form of JDK is:

@ Java Developed Kit

(b) Java Developers Kit Tool

(©) Java Developers Kit

(d) Java Developed Kit Tool ()
33.
tagis used to:

@) Line break

(b) Line border

(c) Paragraph break

(d) Bold border ()
34. Object in Java:

@ Run time Entity

(b) Blue print of another object of the class

(c) Compile Time

(d) All of the above ()

96 %Wd-,d- EHered S preke
35. Which feature is not in Java?

@) Procedural

(b) Obiject oriented

(c) Abstraction

(d) Polymorphism ()
36. When we implement the Runnable interface, we must define the method:

@) start ()

(b) init ()

() run()

(d) runnable () ()
37. When we invoke repaint () for a component, the AWT invokes the method:

€)) draw ()

(b) show ()

(© update ()

(d) paint() ()
38. Which of the following methods can be used to change the size of a component?

€)) dimension ()

(b) setsize ()

(© resize ()

(d) Both (b) and (c) ()
39. Which of the following keywords are used to control access to a class members?

@) abstract

(b) interface

(©) public

(d) all of the above ()
40. The keywords reserved but not used in the initial version of Java are:

@) const

(b) inner

(© goto

(d) all of the above ()

Core Java Programming 97

DESCRIPTIVE PART-II

[[Year- 2011]]

Time allowed : 2 Hours Maximum Marks : 30

Attempt any four descriptive types of questions out of the six. All questions carry 7% marks each.

Q1

(@) Whatis DHTML?

Ans Dynamic HTML is used to create animated web sites by using a combination
of a static markup language a client side scripting language (such as
JavaScript), a presentation definition language (such as CSS).

DHTML allows scripting languages to change variables in a web page's
definition language, which in turn affects the look and function of otherwise
"static" HTML page content, after the page has been fully loaded and during
the viewing process. Thus the dynamic characteristic of DHTML is the way it
functions while a page is viewed, not in its ability to generate a unique page
with each page load.

<html>
<head>
<title>DHTML example</ title>
</head>
<body>
<div id="navigation"></div>

<script>
var init = function () {
myObj = document.getElementByld("navigation");
7
window.onload = init;
</script>

<script src="myjavascript.js"></script>

98

%Wd-,d- a7/ W WA

(b)
Ans

(©)
Ans

</body>
</html>

Define hypertext and Hypermedia ?

Hypertext is text displayed on a computer or other electronic device with
references (hyperlinks) to other text or sound or animations. Hypermedia
simply combines hypertext that the reader can immediately access, usually by
a mouse click, keypress sequence or by touching the screen. Apart from
running text, hypertext may contain tables, images and other presentational
devices. Hypertext is the underlying concept defining the structure of the
World wide web.It is an easy-to-use and flexible format to share information
over the Internet.

Hypermedia - Hypermedia is a superset of hypertext. Hypermedia
documents contain links not only to other pieces of text, but also to other
forms of media - sounds, images, and movies. Images themselves can be
selected to link to sounds or documents. This means that browsers might not
display a text file, but might display images and multimedia.

What is web browser ?

A web browser is a software application for retrieving, presenting, and
traversing information resources on the World Wide Web. An information
resource is identified by a Uniform Resource Identifier (URI) and may be a
web page, image, video, or other piece of content.Hyperlinks present in
resources enable users easily to navigate their browsers to related resources.
A web browser can also be defined as an application software or program
designed to enable users to access, retrieve and view documents and other
resources on the Internet.

Although browsers are primarily intended to access the World Wide Web,
they can also be used to access information provided by web servers in
private networks or files in file systems. The major web browsers are Firefox,
Google Chrome, Internet Explorer, Opera, and Safari.

he first web browser was invented in 1990 by Sir Tim Berners-Lee. It was called
WorldWideWeb and was later renamed Nexus.

Every browser features a toolbar that allows you to perform various functions like:

Go back to the first page you started on the internet which is called Home.
Book your favorite websites
Print content you find interesting on web pages

Core Java Programming

99

(d)

Ans.

Q.2

Check your web history, like the websites you visited in the past
You can go forward and backwards to see the previous sites you viewed

Define the term dynamic binding ?

Dynamic binding also refres to the run time polymorphism or late binding. If
same message is pass to different object each object response is differently

depending upon its own class it is called Dynamic polymorphism.
For acheaving run time polymorphism in java we use three things.

(1) Inhertance must be there
(2) Method overriding must be there

(3) Super class variable refer to the direct or indirect sub class object.

In java dynamic binding is a default binding. But in c++ it is achieve through

virtual function.

Class Shape
{

Public void area()

{

i}

Class Rectangle extend Shape

{

Public void area()

{

i

Class Square extend Shape

{

Public void area()
{

}

Class Demo

{

Public static void main(String args[])
{

Shape obj;

Obj=new Rectangle();

Obj.area();

Obj=new Square();

Obj.area();

}

)

100 %Wd-,d- EHhirike Farnde
(@) How do we create tables in html? Explain with suitable examples?
Ans.

HTML tables are use to present data in rows and columns, we can also create
HTML tables to organize information on our web page.

The process of creating an HTML table is similar to the process that we used
to create our web page and any elements that we may have already included
in your page, such as links or frames. Coding HTML tables into your web
page is fairly easy since you need only understand a few basic table codes.

II. Creating a basic table
The basic structure of an HTML table consists of the following tags:

. Table tags: <TABLE> </TABLE>
. Row tags: <TR> </TR>
. Cell tags: <TD> </TD>

<html>

<head><title> use of table</title>
</head>

<body>

<table border="1">
<tr>

<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
</tr>

<tr>

<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>

</table>

</body>

</html>

HTML Table Headers
Header information in a table are defined with the <th> tag.

All major browsers display the text in the <th> element as bold and centered.

Core Java Programming 101

(b)

Ans.

<table border="1">
<tr>

<th>Header 1</th>
<th>Header 2</th>
</tr>

<tr>

<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
< / tr>

<tr>

<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>

</table>

How the HTML code above looks in our browser:

Header 1 Header 2
row 1, cell 1 row 1, cell 2
row 2, cell 1 row 2, cell 2

What is hypertext link? What is the method to link to a specific place
within the same document?

A hyperlink is a reference to data that the reader can directly follow, or that
is followed automatically. A hyperlink points to a whole document or to a
specific element within a document. Hypertext is text with hyperlinks. A
software system for viewing and creating hypertext is a hypertext system, and
to create a hyperlink is to hyperlink (or simply to link). A user following
hyperlinks is said to navigate or browse the hypertext.

A hyperlink has an anchor, which is the location within a document from
which the hyperlink can be followed; the document containing a hyperlink is
known as its source document. words and terms in the text are hyperlinked
to definitions of those terms. Hyperlinks are often used to implement
reference mechanisms, such as tables of contents, footnotes, bibliographies,
indexes, letters and glossaries.

In some hypertext, hyperlinks can be bidirectional: they can be followed in
two directions, so both ends act as anchors and as targets

102

%Wd-,d- a7/ W WA

Q.3
Ans

What are applets ? explain applet life cycle?

Applet is java program that can be embedded into HTML pages. Java applets
runs on the java enables web browsers such as mozila and internet explorer.
Applet is designed to run remotely on the client browser, so there are some
restrictions on it. Applet can't access system resources on the local computer.
Applets are used to make the web site more dynamic and entertaining.

Advantages of Applet:

Applets are cross platform and can run on Windows, Mac OS and Linux
platform

Applets can work in any of the java plug-in

Applets are supported by most web browsers

Applets are cached in most web browsers, so will be quick to load when
returning to a web page

User can also have full access to the machine if user allows

Disadvantages of Java Applet:

Java plug-in is required to run applet

JVM is compulsary to run the applet

If applet is not already cached in the machine, it will be downloaded from
internet and will take time

Its difficult to desing and build good user interface in applets compared to
HTML technology

import java.applet. Applet;
import java.awt.”;

public class HelloWorld extends Applet {
public void init() { }

public void stop() { }

public void paint(Graphics g) {
g.drawString("Hello, world!", 20,10);

g.drawArc(40,30,20,20,0,360);
)
}

Core Java Programming 103

(b)

Ans.

HTML>

<HEAD>

<TITLE>HelloWorld</TITLE>

</HEAD>

<BODY>

<H1>A Java applet example</H1>

<APPLET code="HelloWorld.class" WIDTH="200" HEIGHT="300">
</APPLET>

</BODY>

</HTML>

The Life cycle of An Applet

Introduction

Applet runs in the browser and its lifecycle method are called by JVM when
it is loaded and destroyed. Here are the lifecycle methods of an Applet:

init(): This method is called to initialized an applet only one time.
start(): This method is called after the initialization of the applet.

stop(): This method can be called multiple times in the life cycle of an
Applet.

destroy(): This method is called only once in the life cycle of the applet
when applet is destroyed.

What are frames and framesets? How they are created and what re their
applications?

Introduction to frames and framesets

HTML frames allow authors to present documents in multiple views, which
may be independent windows or subwindows. Multiple views offer
designers a way to keep certain information visible, while other views are
scrolled or replaced. For example, within the same window, one frame might
display a static banner, a second a navigation menu, and a third the main

104

%Wd-,d- a7/ W WA

document that can be scrolled through or replaced by navigating in the
second frame.

Here is a simple frame document:

<HTML>
<HEAD>
<TITLE>A simple frameset document</TITLE>
</HEAD>
<FRAMESET cols="20%, 80%">
<FRAMESET rows="100, 200">
<FRAME src="contents_of framel.html">
<FRAME src="contents_of_frame2.gif">
</FRAMESET>
<FRAME src="contents_of frame3.html">
<NOFRAMES>
<P>This frameset document contains:

Some neat contents

Some other neat contents

</NOFRAMES>
</FRAMESET>
</HTML>

The FRAMESET element is a frame container for dividing a window into
rectangular subspaces called frames. In a Frameset document, the outermost
FRAMESET element takes the place of BODY and immediately follows the
HEAD.

that might create a frame layout something like this:

Core Java Programming 105

Frame 3 |

When to use frames

From a design viewpoint, there are at least two valid uses of frames:

. Integrated into the page design of a single page, to provide
separate areas for material such as navigation
. As the mechanism for associating material from a specific

author (such as comments) with other pages that normally
stand on their own

Q.4 Write short note on TCP/IP protocol ?

Ans. The Internet protocol suite is the set of communication protocol used for the
internet and similar networks, and generally the most popular protocol stack
for wide area network. It is commonly known as TCF/IP, because of its most
important protocols: Transmission Control Protocol (TCP) and Internet
Protocol (IP), which were the first networking protocols defined in this
standard. It is occasionally known as the DoD model due to the foundational
influence of the ARPANET in the 1970s (operated by DARPA, an agency of
the United States Department of Defense).

TCP/IP provides end-to-end connectivity specifying how data should be
formatted, addressed, transmitted, routed and received at the destination. It has
four abstraction layers, each with its own protocols.[l2l From lowest to highest,
the layers are:

1. The link layer (commonly Ethernet) contains communication technologies for
a local network.

2. The internet layer (IP) connects local networks, thus establishing
internetworking.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/ARPANET
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Internet_protocol_suite#cite_note-0
http://en.wikipedia.org/wiki/Internet_protocol_suite#cite_note-0
http://en.wikipedia.org/wiki/Internet_protocol_suite#cite_note-0
http://en.wikipedia.org/wiki/Link_layer
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Internet_layer
http://en.wikipedia.org/wiki/Internetworking

106 %Wd-,d- EHoirnke ok
3. The transport layer (TCP) handles host-to-host communication.
4. The application layer (for example HTTP) contains all protocols for specific
data communications services on a process-to-process level (for example how
a web browser communicates with a web server).
(b) Write short note on JDBC and JDK?
Ans. Java Database Connectivity in short called as JDBC. It is a java API which

enables the java programs to execute SQL statements. It is an application
programming interface that defines how a java programmer can access the
database in tabular format from Java code using a set of standard interfaces
and classes written in the Java programming language.

JDBC has been developed under the Java Community Process that allows
multiple implementations to exist and be used by the

same application. JDBC provides methods for querying and updating the
data in Relational Database Management system such as SQL, Oracle etc.

The Java application programming interface provides a mechanism for
dynamically loading the correct Java packages and drivers and registering
them with the JDBC Driver Manager that is used as a connection factory for
creating JDBC connections which supports creating and executing statements
such as SQL INSERT, UPDATE and DELETE. Driver Manager is the
backbone of the jdbc architecture.

Generally all Relational Database Management System supports SQL and we
all know that Java is platform independent, so JDBC makes it possible to
write a single database application that can run on different platforms and
interact with different Database Management Systems.

Java Database Connectivity is similar to Open Database Connectivity (ODBC)
which is used for accessing and managing database, but the difference is that
JDBC is designed specifically for Java programs, whereas ODBC is not
depended upon any language.

In short JDBC helps the programmers to write java applications that manage
these three programming activities:

1. It helps us to connect to a data source, like a database.

2. It helps us in sending queries and updating statements to the database and
3. Retrieving and processing the results received from the database in terms
of answering to your query.

http://en.wikipedia.org/wiki/Transport_layer
http://en.wikipedia.org/wiki/Application_layer
http://en.wikipedia.org/wiki/HTTP

Core Java Programming 107

Q.5

Ans.

The Java Development Kit (JDK) is an Oracle Corporation product aimed at
Java developers. Since the introduction of Java, it has been by far the most
widely used Java Software Development Kit (SDK). Sun announced that it
would be released under the GNU General Public License (GPL), thus
making it free software. Sun contributed the source code to the OpenJDK.

JDK contents

] java- the loader for Java applications.

[javac - the compiler, which converts source code into Java bytecode
I appletviewer - this tool can be used to run and debug Java applets without
a web browser

I apt- the annotation-processing tool

1 extcheck- a utility which can detect JAR-file conflicts

1 idlj- the IDL-to-Java compiler. This utility generates Java bindings from a
given Java IDL file.

[javadoc - the documentation generator, which automatically generates
documentation from source code comments

1 jar- the archiver, which packages related class libraries into a single JAR
tile. This tool also helps manage JAR files.

What do you understand by exception handling explain in detail?
Exception handling is a very important yet often neglected aspect of writing
robust software. When an error occurs in a Java program it usually results in
an exception being thrown. How you throw, catch and handle these
exception matters. There are several different ways to do so. Not all are
equally efficient and fail safe.

The three categories of exceptions:

Checked exceptions: A checked exception is an exception that is typically a
user error or a problem that cannot be foreseen by the programmer. For
example, if a file is to be opened, but the file cannot be found, an exception
occurs. These exceptions cannot simply be ignored at the time of compilation.
Runtime exceptions: A runtime exception is an exception that occurs that
probably could have been avoided by the programmer. As opposed to
checked exceptions, runtime exceptions are ignored at the time of
compliation.

Errors: These are not exceptions at all, but problems that arise beyond the
control of the user or the programmer. Errors are typically ignored in your
code because you can rarely do anything about an error. For example, if a

http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/OpenJDK
http://en.wikipedia.org/wiki/Loader_%28computing%29
http://en.wikipedia.org/wiki/Javac
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/AppletViewer
http://en.wikipedia.org/wiki/Metadata_facility_for_Java
http://en.wikipedia.org/wiki/Language_binding
http://en.wikipedia.org/wiki/Java_Interface_Definition_Language
http://en.wikipedia.org/wiki/Javadoc
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Library_%28computer_science%29
http://en.wikipedia.org/wiki/Jar_%28file_format%29
http://en.wikipedia.org/wiki/Jar_%28file_format%29
http://en.wikipedia.org/wiki/Jar_%28file_format%29

108

%Wd-,d- a7/ W WA

stack overflow occurs, an error will arise. They are also ignored at the time of
compilation.

import java.io.*;

public class exceptionHandle{
public static void main(String[] args) throws Exception{
try{
int a,b;
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));
a = Integer.parselnt(in.readLine());
b = Integer.parselnt(in.readLine());
}
catch(NumberFormatException ex){
System.out.println(ex.getMessage()
+ " is not a numeric value.");
System.exit(0);
)
)
}

Exception Hierarchy:

All exception classes are subtypes of the java.lang.Exception class. The
exception class is a subclass of the Throwable class. Other than the exception
class there is another subclass called Error which is derived from the
Throwable class.

Errors are not normally trapped form the Java programs. These conditions
normally happen in case of severe failures, which are not handled by the java
programs. Errors are generated to indicate errors generated by the runtime
environment. Example : JVM is out of Memory. Normally programs cannot
recover from errors.

The Exception class has two main subclasses : IOException class and
RuntimeException Class.

Core Java Programming 109

Throwable
Error Exception
IOException RuntimeException

(b) What is class and object in java?

Ans Javais an Object Oriented Language. As a language that has the Object
Oriented feature Java supports the following fundamental concepts:

. Polymorphism

. Inheritance

. Encapsulation

. Abstraction

. Classes

. Objects

. Instance

° Method

. Message Parsing

o Object - Objects have states and behaviors. Example: A dog has states-color,
name, breed as well as behaviors -wagging, barking, eating. An object is an
instance of a class.

e Class - A class can be defined as a template/ blue print that describe the
behaviors/states that object of its type support.

Objects in Java:

If we consider the real-world we can find many objects around us, Cars, Dogs,
Humans etc. All these objects have a state and behavior.

If we consider a dog then its state is . name, breed, color, and the behavior is .
barking, wagging, running

110

%Wd-,d- a7/ W WA

If you compare the software object with a real world object, they have very
similar characteristics.

Software objects also have a state and behavior. A software object's state is stored
in fields and behavior is shown via methods.

So in software development methods operate on the internal state of an object
and the object-to-object communication is done via methods.

Classes in Java:

A class is a blue print from which individual objects are created.

A sample of a class is given below:

public class Dog{

String breed;
int age;
String color;

void barking(){
}

void hungry(){
}

void sleeping(){
}

A class can contain any of the following variable types.

Local variables . variables defined inside methods, constructors or blocks are
called local variables. The variable will be declared and initialized within the
method and the variable will be destroyed when the method has completed.
Instance variables . Instance variables are variables within a class but outside
any method. These variables are instantiated when the class is loaded.
Instance variables can be accessed from inside any method, constructor or
blocks of that particular class.

Class variables . Class variables are variables declared with in a class, outside
any method, with the static keyword.

Core Java Programming 111

A class can have any number of methods to access the value of various kind of

methods. In the above example, barking(), hungry() and sleeping() are variables.

Below mentioned are some of the important topics that need to be discussed
when looking into classes of the Java Language.

Q.6 What is multi-threading ? explain with an example?
Ans. A running instance is known as process. Multiple parts of process that are
running simultaneous is known as thread. In term of operating system it is
known as multithreading .
In java we can create thread using two methods.
(1) Extending the thread class

(2) Implementing the runnable interface

Extending the thread class:-
(i) Create a sub class of thread

(ii) Override the run method
(iii) Call the start method of thread class with instance of the sub class

Ex...
Class one extends Thread

{

Public void run()
{
IntI;
For(i=1;i<=10;i++)
{System.out.print(“I am one”);}}}
Class Two extends Thread
{

Public void run()
{
IntI;
For(i=1;i<=10;i++)
{System.out.print(“I am Two”);}}}
Class demo

{

Public static void main(String args[])
{
One o0 =new One();
o.start();
Two t=new Two();
t.statrt();

112 %Wd-,d- a7/ W WA

intI;
For(i=1;i<=10;i++)
{
System.out.print(“I am main”);}}}
Implementing the runnable interface:-
(i) Create a class that implement the runnable interface

(ii) Define the run method of the interface
(iii) Pass the instance of the thread class to the object of the class

Class one implement runnable

{

Public void run()

{

Int 1;

For(i=1;i<=10;i++)
{System.out.print(“I am one”);}}}
Class Two implement runnable

{

Public void run()

{

IntI;

For(i=1;i<=10;i++)
{System.out.print(“I am Two”);}}
Class demo

{

Public static void main(String args|])
{
Thread t1=new Thread();
One o =new One(t1);
o.start();
Thread t2=new Thread();
Two t=new Two(t2);
t.statrt();
int i;
For(i=1;i<=10;i++)
{ System.out.print(“l am main”);
H
(b) What are interfaces and packages? Explain their differences?
Ans. An interface is a collection of abstact methods and constents.methods are by
default public and abstract and varaibles are public static and final.we need

Core Java Programming 113

not to specify their attribute.in java multiple inheritance is not allow but
multilpe inheritance of interfaces are allowed.

A package is a grouping of classes and interfaces. The purpose of grouping
classes is that we can access them easily only using the import keyword.
Package is very similar to grouping items within a folder or directory on a
tile system. A class is found within a package, but this does not have an
impact on the class' behavior.

An interface, however, is a .java file that is used (implemented) by another
class to tell the outside world that it conforms to a certain specification. For
example, you might have a "Runnable" interface that has a "run()" method in
it, by having a class that is "Runnable" (implements Runnable) anyone using
that class knows that it must have a "run()" method defined. This is used
when you have several different classes that have the same interface.

Interfaces have more in common with abstract classes than they do with
packages. An interface, by definition, cannot have any implemented methods;
an abstract class, in contrast, can define some methods and leave some
methods to be implemented by a subclass. Also, a class can implement many
interfaces, but can only extend one (abstract) class.

ex.
Package finance;
Public class Distance

{

}

Import finance.*;
Class usedistance

{

Public static void main(String args[])

{

Distance d1=new Distance();

