

Biyani's Think Tank

Concept based notes

Data Structure and Algorithm
BCA III Sem.

Mr. Rahul Agarwal, Ms. Bhavana Sangamnarkar
Asst. Professor

Dept. of IT

 Biyani Girls College, Jaipur

While every effort is taken to avoid errors or omissions in this Publication, any

mistake or omission that may have crept in is not intentional. It may be taken note of

that neither the publisher nor the author will be responsible for any damage or loss of

any kind arising to anyone in any manner on account of such errors and omissions.

Published by :

Think Tanks
Biyani Group of Colleges

Concept & Copyright :

Biyani Shikshan Samiti
Sector-3, Vidhyadhar Nagar,
Jaipur-302 023 (Rajasthan)

Ph : 0141-2338371, 2338591-95 Fax : 0141-2338007
E-mail : acad@biyanicolleges.org
Website :www.gurukpo.com; www.biyanicolleges.org

ISBN : 978-93-83462-33-9

Edition: 2025

Leaser Type Setted by :
Biyani College Printing Department

mailto:acad@biyanicolleges.org
http://www.biyanicolleges.org/

Preface

I am glad to present this book, especially designed to serve the needs of

the students. The book has been written keeping in mind the general weakness
in understanding the fundamental concepts of the topics. The book is self-
explanatory and adopts the “Teach Yourself” style. It is based on question-
answer pattern. The language of book is quite easy and understandable based
on scientific approach.

Any further improvement in the contents of the book by making corrections,
omission and inclusion is keen to be achieved based on suggestions from the
readers for which the author shall be obliged.

I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr. Sanjay
Biyani, Director (Acad.) Biyani Group of Colleges, who are the backbones and
main concept provider and also have been constant source of motivation
throughout this Endeavour. They played an active role in coordinating the various
stages of this Endeavour and spearheaded the publishing work.

I look forward to receiving valuable suggestions from professors of various
educational institutions, other faculty members and students for improvement of
the quality of the book. The reader may feel free to send in their comments and
suggestions to the under mentioned address.

Author

UNIT – I

Introduction to Algorithm Design: Algorithm, its characteristics, efficiency of

algorithms, analyzing Algorithms and problems.

Linear Structure: Arrays, records, stack, operation on stack, implementation of

stack as an array, queue, types of queues, operations on queue, implementation

of queue.

UNIT – II

Linked Structure : List representation, Polish notations, operations on linked

list - get node and free node operation, implementing the list operation,

inserting into an ordered linked list, deleting, circular linked list.

Tree Structure : Concept and terminology, Types of trees, Binary search tree,

inserting, deleting and searching into binary search tree, tree traversals.

UNIT – III

Graph Structure : Graph representation - Adjacency matrix, adjacency list,

Warshall's algorithm, adjacency multilist representation. Orthogonal

representation of graph . Graph traversals - BFS and DFS. Shortest path,

transitive closure.

UNIT – IV

Searching and sorting : Searching - sequential searching, binary searching,

hashing. Sorting - selection sort, bubble sort, quick sort, heap sort, merge sort,

and insertion sort, efficiency considerations.

6

Chapter-1

Basics of Algorithms

Q.1. What are the various steps to plan algorithm?

 Ans.: Following steps must be followed to plan any algorithm :

(1) Device Algorithm : Creating an algorithm is an art in which may never

be fully automated. When we get the problem, we should first analyse
the given problem clearly and then write down some steps on the
paper.

(2) Validate Algorithm : Once an algorithm is devised , it is necessary to

show that it computes the correct answer for all possible legal inputs .
This process is known as algorithm validation. The algorithm need not
as yet be expressed as a program. It is sufficient to state it in any precise
way. The purpose of validation is to assure us that this algorithm will
work correctly independently of the issues concerning the
programming language it will eventually be written in. Once the
validity of the method has been shown, a program can be written and a
second phase begins. This phase is referred to as program proving or
program verification.

(3) Analyse Algorithm : As an algorithm is executed , it uses the
computers central processing unit to perform operations and its
memory (both immediate and auxiliary) to hold the program and data.
Analysis of algorithm or performance analysis refers to the task of
determining how much computing time and storage an algorithm
requires. An important result of this study is that it allows you to make
quantitative judgments about the value of one algorithm over another.
Another result is that it allows you to predict whether the software will
meet any efficiency constraints that exist. Analysis can be made by
taking into consideration.

Algorithms and Data Structure 7

(4) Test A Program : Testing a program consists of 2 phases : debugging

and performance management. Debugging is the process of executing
programs on sample data sets to determine whether results are
incorrect if so corrects them. Performance management is the process of
executing a correct program on data sets and measuring the time and
space it takes to compute the results. These timing figures are useful in
that they may confirm a previously done analysis and point out logical
places to perform useful optimization.

Q.2. Define Algorithms with suitable example.

Ans.: Consider the following three examples. What do they all have in common?

 How to change your motor oil

(1) Place the oil pan underneath the oil plug of your car.

(2) Unscrew the oil plug.

(3) Drain oil.

(4) Replace the oil plug.

(5) Remove the oil cap from the engine.

(6) Pour in 4 quarts of oil.

(7) Replace the oil cap.

Therefore an algorithm is a set of instructions for solving a problem. Once we
have created an algorithm, we no longer need to think about the principles on
which the algorithm is based. This means that algorithms are a way of
capturing intelligence and sharing it with others. Once you have encoded the
necessary intelligence to solve a problem in an algorithm, many people can
use your algorithm without needing to become experts in a particular field.

Q.3 Why the algorithm are important to computers. How can we create it in

understandable form?

Ans. Algorithms are especially important to computers because computers are

really general purpose machines for solving problems. But in order for a
computer to be useful, we must give it a problem to solve and a technique for

8

solving the problem. Through the use of algorithms, we can make computers
"intelligent" by programming them with various algorithms to solve
problems. Because of their speed and accuracy, computers are well-suited for
solving tedious problems such as searching for a name in a large telephone
directory or adding a long column of numbers. However, the usefulness of
computers as problem solving machines is limited because the solutions to
some problems cannot be stated in an algorithm.

Much of the study of computer science is dedicated to discovering efficient
algorithms and representing them so that they can be understood by
computers.

An informal definition of an algorithm is "a set of instructions for solving a
problem" and we illustrated this definition with a recipe, and instructions for
changing the oil in a car engine. You also created your own algorithm for
putting letters and numbers in order. While these simple algorithms are fine
for us, they are much too ambiguous for a computer. In order for an algorithm
to be applicable to a computer, it must have certain characteristics. We will
specify these characteristics in our formal definition of an algorithm.

An algorithm is a well-ordered collection of unambiguous and effectively

computable operations that when executed produces a result and halts in a
finite amount of time [Schneider and Gersting 1995].

With this definition, we can identify five important characteristics of
algorithms :

 Algorithms are well-ordered.

 Algorithms have unambiguous operations.

 Algorithms have effectively computable operations.

 Algorithms produce a result.

 Algorithms halt in a finite amount of time.

When writing algorithms, we have several choices of how we will specify the

operations in our algorithm. One option is to write the algorithm using plain

English. Although plain English may seem like a good way to write an

algorithm, it has some problems that make it a poor choice. First, plain English

is too wordy. When we write in plain English, we must include many words

http://courses.cs.vt.edu/~csonline/Algorithms/Lessons/DefinitionOfAlgorithm/#refs

Algorithms and Data Structure 9

that contribute to correct grammar or style but do nothing to help

communicate the algorithm. Second, plain English is too ambiguous. Often an

English sentence can be interpreted in many different ways. Remember that

our definition of an algorithm requires that each operation be unambiguous.

Another option for writing algorithms is using programming languages.

These languages are collections of primitives (basic operations) that a

computer understands. While programming languages avoid the problems of

being wordy and ambiguous, they have some other disadvantages that make

them undesirable for writing algorithms. Consider the following lines of code

from the programming language C++.

 a = 1;

 b = 0;

 while (a <= 10)

 {

 b = b + a;

 a++;

 }

 cout << b;

This algorithm sums the numbers from 1 to 10 and displays the answer on the
computer screen. However, without some special knowledge of the C++
programming language, it would be difficult for you to know what this
algorithm does. Using a programming language to specify algorithms means
learning special syntax and symbols that are not part of Standard English. For
example, in the code above, it is not very obvious what the symbol "++" or the
symbol "<<" does. When we write algorithms, we would rather not worry
about the details of a particular programming language.

What we would really like to do is combine the familiarity of plain English
with the structure and order of programming languages. A good compromise
is structured English. This approach uses English to write operations, but
groups operations by indenting and numbering lines. Each operation in the
algorithm is written on a separate line so they are easily distinguished from

10

each other. We can easily see the advantage of this organization by comparing
the structured English algorithm with the plain English algorithm.

How to change your motor oil

Plain English Structured English

First, place the oil pan underneath
the oil plug of your car. Next,
unscrew the oil plug and drain the
oil. Now, replace the oil plug. Once
the old oil is drained, remove the oil
cap from the engine and pour in 4
quarts of oil. Finally, replace the oil
cap on the engine.

1. Place the oil pan
underneath the oil plug
of your car.

2. Unscrew the oil plug.

3. Drain oil.

4. Replace the oil plug.

5. Remove the oil cap from
the engine.

6. Pour in 4 quarts of oil.

7. Replace the oil cap.

For the remainder of this study, we will write our algorithms using the
structured English approach.

Q.4. How can we analyse an Algorithm?

Ans.: To analyze an algorithm is to determine the amount of resources (such as time

and storage) necessary to execute it. Most algorithms are designed to work

with inputs of arbitrary length. Usually the efficiency or complexity of an

algorithm is stated as a function relating the input length to the number of
steps (time complexity) or storage locations (space complexity).

Algorithm analysis is an important part of a broader computational
complexity theory, which provides theoretical estimates for the resources
needed by any algorithm which solves a given computational problem. These
estimates provide an insight into reasonable directions of search of efficient
algorithms.

Q.5. Explain Analysis of Algorithm in terms of different Order Notations.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Problem_size
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory

Algorithms and Data Structure 11

Ans.: In theoretical analysis of algorithms it is common to estimate their complexity
in asymptotic sense, i.e., to estimate the complexity function for reasonably

large length of input. Big O notation, omega notation and theta notation are
used to this end. For instance, binary search is said to run an amount of steps
proportional to a logarithm, or in O(log(n)), colloquially "in logarithmic time".
Usually asymptotic estimates are used because different implementations of
the same algorithm may differ in efficiency. However the efficiencies of any
two "reasonable" implementations of a given algorithm are related by a
constant multiplicative factor called hidden constant.

 Asymptotic Notation :

If we want to treat large problems (these are the critical ones), we are
interested in the asymptotic behavior of the growth of the running time
function.

Thus, when comparing the running times of two algorithms :

Constant factors can be ignored.

Lower order terms are unimportant when the higher order terms are
different.

For instance, when we analyze selection sort, we find that it takes T(n) =
n2 + 3n - 4 array accesses.

For large values of n, the 3n - 4 part is insignificant compared to the n2

part.

An algorithm that takes a time of 100n2 will still be faster than an

algorithm that n3 for any value of n larger than 100.

 Asymptotically Tight Upper and Lower Bound : Big-Theta "Θ"-Notation :

Definition : Let f(n) and g(n) be real-valued functions of a single non-

negative integer argument. We write f(n) = Θ(g(n)) if there exist

positive real-valued constants c1, c2 and a positive integer n0 such that :

0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 .

In other words : For large inputs (asymptotically) f(n) is "sandwiched"
between c1 g(n) and c2 g(n).

Examples :

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Implementation

12

2n2+3n is θ(n2).
2n3+3n is not θ(n2).

 Asymptotically Tight Upper Bound : Big-Oh "O"-Notation :

Definition : Let f(n) and g(n) be real-valued functions of a single non-

negative integer argument. We write f(n) = O(g(n)) if there exist a
positive real-valued constant c and a positive integer n0 such that :

0 ≤ f(n) ≤ c g(n) for all n ≥ n0 .

In other words, for large inputs (asymptotically) f(n) is below
c g(n) :

The "Θ"-Notation is stronger than the O-notation.

Examples :

3n-6 is O(n).

9n4+12n2+1234 is O(n4).

n+log(n) is O(n).

log(n)+5log(log(n)) is O(log(n)).

1234554321 is O(1).

3/n is O(1/n).

 Asymptotically Tight Lower Bound : Big-Omega "Ω"-Notation :

Algorithms and Data Structure 13

Definition : Let f(n) and g(n) be real-valued functions of a single non-

negative integer argument. We write f(n) = Ω(g(n)) if there exist a
positive real-valued constant c and a positive integer n0 such that :

0 ≤ c g(n) ≤ f(n) for all n ≥ n0 .

In other words : For large inputs (asymptotically) f(n) is above

c g(n) .

Note :

We have f(n) = Θ(g(n)) iff (if and only if)

f(n) = O(g(n)) and f(n) = Ω(g(n)).

In other words :

If f(n) is Θ(g(n)), the f(n) is Ω(g(n)).

If f(n) is Θ(g(n)), then f(n) is O(g(n)).

Example :

2n3+3n is Ω(n3).

 Asymptotically Non-Tight Upper Bound : Little-oh "o"-Notation :

Definition : Let f(n) and g(n) be real-valued functions of a single non-
negative integer argument. We write f(n) = o(g(n)) if for any positive

real-valued constant c exists a positive integer n0 such
that :

0 ≤ f(n) ≤ c g(n) for all n ≥ n0 .

In other words, the inequality holds for all constants c.

For any constant c we can come up with large enough inputs n so that
f(n) is below c g(n).

g(n) grows a lot faster than f(n) : f(n)/g(n)→0 as n→∞.

Example :

log(n) is o(n)

 Asymptotically Non-Tight Lower Bound: Little-Omega "ω" Notation

14

Definition : Let f(n) and g(n) be real-valued functions of a single non-
negative integer argument. We write f(n) = ω(g(n)) if for any positive

real-valued constant c exists a positive integer n0 such
that :

0 ≤ c g(n) ≤ f(n) for all n ≥ n0 .

As an alternative definition we can say the following :

Definition : Let f(n) and g(n) be real valued functions of an integer
variable. We say f(n) is ω(g(n)) if g(n) is o(f(n)). This is pronounced as

"f(n) is little-omega of g(n)".

f(n) grows a lot faster than f(n) : f(n)/g(n)→∞ as n→∞.

Example :

n2 is ω(nlog(n)).

Q.6. Define Efficiency of an Algorithm in terms of Time and Space.

Ans.: Efficiency of an algorithm : In computer science, efficiency is used to

describe properties of an algorithm relating to how much of various types of
resources it consumes. The two most frequently encountered are speed or
running time, the time it takes for an algorithm to complete, and space, the
memory or non-volatile storage used by the algorithm during its operation.
Optimization is the process of making code as efficient as possible, sometimes
focusing on space at the cost of speed, or vice versa.

The speed of an algorithm is measured in various ways. The most common
method uses time complexity to determine the Big-O of an algorithm: often, it
is possible to make an algorithm faster at the expense of space. This is the case
whenever you cache the result of an expensive calculation rather than
recalculating it on demand. This is a very common method of improving
speed, so much so that languages often add special features to support it, such
as C++'s mutable keyword.

The space of an algorithm is actually two separate but related things. The first
part is the space taken up by the compiled executable on disk (or equivalent,
depending on the hardware and language) by the algorithm. This can often be
reduced by preferring run-time decision making mechanisms (such as virtual
functions and run-time type information) over certain compile-time decision

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Optimization_%28computer_science%29
http://en.wikipedia.org/wiki/Time_complexity
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Virtual_function
http://en.wikipedia.org/wiki/Virtual_function
http://en.wikipedia.org/wiki/Virtual_function
http://en.wikipedia.org/wiki/Run-time_type_information

Algorithms and Data Structure 15

making mechanisms (such as macro substitution and templates). This,
however, comes at the cost of speed.

The other part of algorithm space measurement is the amount of temporary
memory taken up during processing. For example, pre-caching results, as
mentioned earlier, improves speed at the cost of this attribute.

Optimization of algorithms frequently depends on the properties of the
machine the algorithm will be executed on. For example, one might optimize
code for time efficiency in applications for home computers with sizable
amounts of memory, while code to be placed in small, memory-tight devices
may have to be made to run slower to conserve space.

One simple way to determine whether an optimization is worthwhile is as
follows: Let the original time and space requirements (generally in Big-O
notation) of the algorithm be O1 and O2. Let the new code require N1 and N2
time and space respectively. If N1N2 < O1O2, the optimization should be
carried out. However, as mentioned above, this may not always be true.

One must be careful, in the pursuit of good coding style, not to over-
emphasize efficiency. Nearly all of the time, a clean and usable design is much
more important than a fast, small design. There are exceptions to this rule
(such as embedded systems, where space is tight, and processing power
minimal) but these are rarer than one might expect.

Computational complexity theory, as a branch of the theory of computation

in computer science, investigates the problems related to the amounts of
resources required for the execution of algorithms (e.g., execution time), and
the inherent difficulty in providing efficient algorithms for specific
computational problems.

A typical question of the theory is, "As the size of the input to an algorithm
increases, how do the running time and memory requirements of the
algorithm change and what are the implications and ramifications of that
change?" In other words, the theory, among other things, investigates the
scalability of computational problems and algorithms. In particular, the theory
places practical limits on what computers can accomplish.

Exact (not asymptotic) measures of efficiency can sometimes be computed but
they usually require certain assumptions concerning the particular
implementation of the algorithm, called model of computation. A model of

http://en.wikipedia.org/wiki/Macro_%28computer_science%29
http://en.wikipedia.org/wiki/Template_%28programming%29
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Theory_of_computation
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computational_resource
http://en.wikipedia.org/wiki/Computational_resource
http://en.wikipedia.org/wiki/Computational_resource
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computational_problem
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Model_of_computation

16

computation may be defined in terms of an abstract computer, e.g., Turing
machine, and/or by postulating that certain operations are executed in unit
time. For example, if the sorted set to which we apply binary search has N
elements, and we can guarantee that a single binary lookup can be done in
unit time, then at most log2 N + 1 time units are needed to return an answer.

Exact measures of efficiency are useful to the people who actually implement

and use algorithms, because they are more precise and thus enable them to

know how much time they can expect to spend in execution. To some people

(e.g. game programmers), a hidden constant can make all the difference

between success and failure.

Time efficiency estimates depend on what we define to be a step. For the

analysis to make sense, the time required to perform a step must be

guaranteed to be bounded above by a constant. One must be careful here; for

instance, some analyses count an addition of two numbers as a step. This

assumption may not be warranted in certain contexts. For example, if the

numbers involved in a computation may be arbitrarily large, addition no

longer can be assumed to require constant time

Q.7. Compare the Performance of an Algorithm. Explain Algorithmic Complexity
Measures.

Ans.: Our aim is to compare the performance of algorithms.

We can consider the average case or the worst case performance (referring to
an instance of a given problem).

Usually we treat only the worst case performance :

The worst case occurs fairly often, example: looking for in entry in a database
that is not present.

The result of the worst case analysis is often not different to the average case
analysis (same order of complexity).

Running Times : One way to compare running times is simply to run several
tests for each algorithm and compare the timings.

http://en.wikipedia.org/wiki/Abstract_machine
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Binary_search

Algorithms and Data Structure 17

Another way is to estimate the time required for an algorithm to solve a
problem.

The result of the analysis of an algorithm is usually a formula giving the
amount of machine operations (e.g., floating point operations, number of
memory accesses, number of comparisons, etc) or some other metric (e.g.,
number of elements to sort, neurons or connections in a neural network,
vertices or edges in a tree, etc.), that the algorithm takes to complete.

In the following we write running times as a function of n.

Space Complexity : Running time is usually the thing we care most about. But

it can be as well important to analyze the amount of memory used by a
program.

If a program takes a lot of time, you can still run it, and just wait longer for the
result.

However if a program takes a lot of memory, you may not be able to run it at
all, so this is an important parameter to understand.

We analyze things differently for recursive and iterative programs.

For an iterative program, it is usually just a matter of looking at the variable

declarations and storage allocation calls, e.g., array of n numbers.

Analysis of recursive program space is more complicated: the space used at

any time is the total space used by all recursive calls active at that time.

Each recursive call takes a constant amount of space: some space for local
variables and function arguments, and also some space for remembering
where each call should return to.

Q.8. What is Pseudo Code? Explain how can we use Pseudo Code to design a

Program?

Ans.: Pseudo code is a short hand way of describing a computer program. Rather

than use the specific syntax of a computer language, more general wording is
used. Using pseudocode, it is easier for a non-programmer to understand the
general workings of the program.

Pseudo code (pronounced SOO-doh-kohd) is a detailed yet readable

description of what a computer program or algorithm must do, expressed in a

18

formally-styled natural language rather than in a programming language.

Pseudocode is sometimes used as a detailed step in the process of developing

a program. It allows designers or lead programmers to express the design in

great detail and provides programmers a detailed template for the next step of

writing code in a specific programming language.

Because pseudocode is detailed yet readable, it can be inspected by the team of

designers and programmers as a way to ensure that actual programming is

likely to match design specifications. Catching errors at the pseudocode stage

is less costly than catching them later in the development process. Once the

pseudocode is accepted, it is rewritten using the vocabulary and syntax of a

programming language. Pseudocode is sometimes used in conjunction with

computer-aided software engineering-based methodologies.

It is possible to write programs that will convert a given pseudocode language

into a given programming language.

Pseudocode Example :

 1. if credit card number is valid then

 execute transaction based on number and order

 else

 show a generic failure message

 end if

2. A bank will grant loan under the following conditions :

(i) If a customer has an account with the bank and had no loan

outstanding, loan will be granted.

(ii) If a customer has an account with the bank but some amount is

outstanding from previous loans then loan will be granted if

special approval is needed.

(iii) Reject all loan applications in all other cases.

 IF customer has a Bank Account THEN

 IF Customer has no dues from previous account THEN

 Allow loan facility

 ELSE

http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213117,00.html
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci213081,00.html

Algorithms and Data Structure 19

 IF Management Approval is obtained THEN

 Allow loan facility

 ELSE

 Reject

 ENDIF

 ENDIF

 ELSE

 Reject

 ENDIF

□ □ □

20

Chapter-2

Data Structure Ogranisation

 Q.1. Explain Data Types along with their sizes and ranges.

Ans.: Data Types : The type of a data object in C determines the range and kind of

values an object can represent, the size of machine storage reserved for an

object, and the operations allowed on an object. Functions also have types, and

the function's return type and parameter types can be specified in the

function's declaration

Data Sizes : An object of a given data type is stored in a section of memory

having a discreet size. Objects of different data types require different

amounts of memory. Following table shows the size and range of the basic

data types.

 Sizes and Ranges of Data Types :

Type Size Range

Integral Types :

short int , or signed short int 16 bits -32768 to 32767

unsigned short int 16 bits 0 to 65535

int or signed int 32 bits -2147483648 to 2147483647

unsigned int 32 bits 0 to 4294967295

long int , or signed long int
(OpenVMS)

32 bits - 2147483648 to 2147483647

long int , or signed long int
(Digital UNIX)

64 bits
- 9223372036854775808 to

9223372036854775807

Algorithms and Data Structure 21

unsigned long int (OpenVMS) 32 bits 0 to 4294967295

unsigned long int (Digital UNIX) 64 bits 0 to 18446744073709551615

signed __int64 (Alpha) 64 bits
-9223372036854775808 to

9223372036854775807

unsigned __int64 (Alpha) 64 bits 0 to 18446744073709551615

Type Size Range

Integral Character Types :

char and signed char 8 bits -128 to 127

unsigned char 8 bits 0 to 255

wchar_t 32 bits 0 to 4294967295

Floating- Point Types (range is for absolute value) :

float 32 bits 1.1 x 10 -38 to 3.4 x 10 38

double 64 bits 2.2 x 10 -308 to 1.7 x 10 308

long double (OpenVMS Alpha) 128 bits 3.4 x 10 -49321 to 1.2 x 10 49321

long double (OpenVMS VAX,
Digital UNIX)

Same as
double

Same as double

Derived types can require more memory space.

 Q.2. What is Data Abstraction? Define Abstract Data Types.

Ans.: Abstraction: In computer science, abstraction is a mechanism and practice to

reduce and factor out details so that one can focus on a few concepts at a
time.The major purpose of a database system is to provide users with an
abstract view of the system. The system hides certain details of how data is

stored and created and maintained Complexity should be hidden from users.

Data Abstraction: Data abstraction is the enforcement of a clear separation

between the abstract properties of a data type and the concrete details of its
implementation. The abstract properties are those that are visible to client code
that makes use of the data type--the interface to the data type--while the

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_type

22

concrete implementation is kept entirely private, and indeed can change, for
example to incorporate efficiency improvements over time. The idea is that
such changes are not supposed to have any impact on client code, since they
involve no difference in the abstract behaviour.

For example, one could define an abstract data type called lookup table, where

keys are uniquely associated with values, and values may be retrieved by

specifying their corresponding keys. Such a lookup table may be implemented

in various ways: as a hash table, a binary search tree, or even a simple linear

list. As far as client code is concerned, the abstract properties of the type are

the same in each case.

Of course, this all relies on getting the details of the interface right in the first

place, since any changes there can have major impacts on client code. Another

way to look at this is that the interface forms a contract on agreed behaviour

between the data type and client code; anything not spelled out in the contract

is subject to change without notice.

Languages that implement data abstraction include Ada and Modula-2.

Object-oriented languages are commonly claimed to offer data abstraction;

however, their inheritance concept tends to put information in the interface

that more properly belongs in the implementation; thus, changes to such

information ends up impacting client code, leading directly to the Fragile

binary interface problem.

 Abstract Data Types :

 The Concept of Abstraction :

 Abstraction allows one to collect instances of entities into groups
in which their common attributes need not be considered.

 Two kinds of abstractions in programming languages are
process abstraction and data abstraction.

 The concept of process abstraction is one of the oldest.? All
subprograms are process abstractions because they provide a
way for a program to specify that some process is to be done,
without providing the details of how it is to be done.

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Modula-2
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Inheritance_%28computer_science%29
http://en.wikipedia.org/wiki/Fragile_binary_interface_problem
http://en.wikipedia.org/wiki/Fragile_binary_interface_problem
http://en.wikipedia.org/wiki/Fragile_binary_interface_problem

Algorithms and Data Structure 23

 Process abstraction is crucial to the programming process.? The
ability to abstract away many of the details of algorithms in
subprograms makes it possible to construct, read, and
understand large programs.

 All subprograms, including concurrent subprograms, and
exception handlers, are process abstractions.

 Encapsulation :

 Encapsulation is a grouping of subprograms and the data that

they manipulate.

 An encapsulation provides an abstracted system and a logical
organization for a collection of related computations.

 They are often placed in libraries and made available for reuse in
programs other than those for which they are written.

 Introduction to Data Abstraction :

 An abstract data type is simply an encapsulation that includes
only the data representation of one specific data type and the
subprograms that provide the operations for that type.

 An instance of an abstract data type is called an object.

 Object-oriented programming is an outgrowth of the use of data

abstraction.

 Floating-Point as an Abstract Data Type :

 All built-in types are abstract data types, even those of
FORTRAN I

 Floating-point types employ a key concept in data abstraction:
information hiding? The actual format of the data in a floating-
point cell is hidden from the user.

 User Defined Abstract Data Types :

 The concept of user-defined abstract data types is relatively
recent.

 They should provide :

24

o A type definition that allows program units to declare
variables of the type but hides the representation of these
variables.

o A set of operations for manipulating objects of the type.

 An abstract data type is a data type that satisfies two conditions :

o The representation, or definition, of the type and the
operations are contained in a single syntactic unit.

o The representation of objects of the type is hidden from
the program units that use the type, so only direct
operations possible on those objects are those provided in
the type? Definition.

 Program units that use a specific abstract data type are called
clients of that type.

 A benefit of information hiding is increased reliability.? This is
because clients cannot change the underlying representations of
objects directly, either intentionally or by accident, thus
increasing the integrity of the object

 Design Issues :

 A facility for defining abstract data types in a language must
provide a syntactic unit that can encapsulate the type definition
and subprogram definitions of the abstraction operations.

 Concurrent Pascal, Smalltalk, C++, and Java directly support
abstract data types.

 Some design issues beyond encapsulation are whether the kinds
of types that can be abstract should be restricted, whether
abstract data types can be parameterized, and what access
controls are provided, and how such controls are specified.

 Language Examples :

 C++

o Unlike, Ada and Modula-2, which provide encapsulation
that can used to simulate abstract data types, C++

Algorithms and Data Structure 25

provides the class, which more directly support abstract
data types.

o The data defined in a class are called data members; the
functions defined in a class are called member functions.

o Classes may contain both hidden and visible entities.

□ □ □

26

Chapter-3

Arrays

Q.1. What are the characteristics of Arrays in C?

Ans.: 1) An array holds elements that have the same data type.

2) Array elements are stored in subsequent memory locations.

3) Two-dimensional array elements are stored row by row in subsequent
memory locations.

4) Array name represents the address of the starting element.

5) Array size should be mentioned in the declaration. Array size must be a
constant expression and not a variable.

Q.2. How do I know how many elements an Array can hold?

Ans.: The amount of memory an array can consume depends on the data type of an

array. In DOS environment, the amount of memory an array can consume
depends on the current memory model (i.e. Tiny, Small, Large, Huge, etc.). In
general an array cannot consume more than 64 kb. Consider following
program, which shows the maximum number of elements an array of type int,
float and char can have in case of Small memory model.

main()

{

int i[32767] ;

float f[16383] ;

char s[65535] ;

}

Q.3. How can we declare an Array?

Algorithms and Data Structure 27

Ans.: Declaring Arrays : Arrays are declared with the bracket punctuators [], as

shown in the following syntax :

 storage-class-specifier(opt) type-specifier declarator [constant-expression-list(opt)];

The following example shows a declaration of a 10-element array of integers, a
variable called table_one :

 int table_one[10];

The type-specifier shows the data type of the elements. The elements of an array
can be of any scalar or aggregate data type. The identifier table_one specifies
the name of the array. The constant expression 10 gives the number of
elements in a single dimension. Arrays in C are zero-based; that is, the first
element of the array is identified with a 0 subscript, such as the one shown in
the following example :

int x[5];

x[0] = 25; /* The first array element is assigned the value 25 */

The expression between the brackets in the declaration must be an integral
constant expression with a value greater than zero. Omitting the constant
expression creates an incomplete array declaration, which is useful in the
following cases :

 If the array is declared external and its storage is allocated by a
definition in another place, you can omit the constant expression for
convenience when the array name is declared, as in the following
example :

extern int array1[];

int first_function(void)

{

 .

 .

 .

}

In a separate compilation unit :

int array1[10];

28

int second_function(void)

{

 .

 .

 .

}

The array size specifier may only be omitted from the first pair of
brackets in a multidimensional array declaration. This is because an
array's elements must have complete types, even if the array itself has
an incomplete type.

 If the declaration of the array includes initializers, you can omit the size
of the array, as in the following example :

char array_one[] = "Shemps";

char array_two[] = { 'S', 'h', 'e', 'm', 'p', 's', '\0' };

The two definitions initialize variables with identical elements. These
arrays have seven elements: six characters and the null character (\0),
which terminates all character strings. The size of the array is
determined from the number of characters in the initializing character-
string constant or initialization list. Initializing an incomplete array
completes the array type. An array is completed at the end of its
initializer list.

 If you use the array as a function parameter, the array must be defined
in the calling function. However, the declaration of the parameter in the
called function can omit the constant expression within the brackets.
The address of the first element of the array is passed. Subscripted
references in the called function can modify elements of the array. The
following example shows how to use an array in this manner :

main()

{

 /* Initialize array */

 static char arg_str[] = "Thomas";

Algorithms and Data Structure 29

 int sum;

 sum = adder(arg_str); /* Pass address of first array element */

 .

 .

 .

}

/* adder adds ASCII values of letters in array */

int adder(char param_string[])

{

 int i, sum = 0; /* Incrementer and sum */

 /* Loop until NULL char */

 for (i = 0; param_string[i] != '\0'; i++)

 sum += param_string[i];

 return sum;

}

After the function adder is called, parameter param_string receives the

address of the first character of argument arg_str, which can then be

accessed in adder . The declaration of param_ string serves only to give

the type of the parameter, not to reserve storage for it.

Array members can also be pointers. The following example declares an
array of floating-point numbers and an array of pointers to floating-
point numbers :

 float fa[11], *afp[17];

When a function parameter is declared as an array, the compiler treats
the declaration as a pointer to the first element of the array. For
example, if x is a parameter and is intended to represent an array of
integers, it can be declared as any one of the following declarations :

int x[];

30

int *x;

int x[10];

Note that the specified size of the array does not matter in the case of a
function parameter, since the pointer always points to only the first
element of the array.

C supports arrays declared as an array of arrays. These are sometimes
called multidimensional arrays. Consider the following example, where
variable table_one is a two-dimensional array containing 20 integers :

 int table_one[10][2];

Arrays are stored in row-major order, which means the
element table_one[0][0] (in the previous example) immediately
precedes table_one[0][1], which in turn immediately precedes
table_one[1][0] .

Q.4. What are the steps to initialize an Array?

Ans.: Initializing Arrays : Arrays are initialized with a brace-enclosed list of

constant expressions. A list of initializers for an incomplete array declaration
completes the array's type and completely defines the array size. Therefore,
when initializing an array of unknown size, the number of initializers in the
initializer list determines the size of the array. For example, the following
declaration initializes an array of three elements :

 int x[] = { 1, 2, 3 };

If the array being initialized has a storage class of static , the initializers must
be constant expressions.

Initializers for an array of a given size are assigned to array members on a one-
to-one basis. If there are too few initializers for all members, the remaining
members are initialized to 0. Listing too many initializers for a given size array
is an error. For example :

 int x[5] = { 0, 1, 2, 3, 4, 5 }; /* error */

String literals are often assigned to a char or wchar_t array. In this case, each

character of the string represents one member of a one-dimensional array, and

the array is terminated with the null character. When an array is initialized by

Algorithms and Data Structure 31

a pointer to a string literal, the string literal cannot be modified through the

pointer.

When initializing an array with a string literal, use quotation marks around

the initializing string. For example :

 char string[26] = { "This is a string literal." };

 /* The braces above are optional here */

The terminating null character is appended to the end of the string if the size
permits, as it does in this case. Another form for initializing an array with
characters is the following :

 char string[12] = {'T', 'h', 'i', 's', ' ', 'w', 'a', 'y' };

The preceding example creates a one-dimensional array containing the string

value "This way ". The characters in this array can be freely modified.

Remaining uninitialized array members will be automatically initialized to

zero.

If the size of the array used for a string literal is not explicitly stated, its size is

determined by the number of characters in the string (including the

terminating null character). If the size of the array is explicitly stated,

initializing the array with a string literal longer than the array is an error.

Note : There is one special case where the null character is not automatically

appended to the array. This case is when the array size is explicitly specified

and the number of initializers completely fills the array size. For example :

 char c[4] = "abcd";

Here, the array c holds only the four specified characters, a , b , c , and d . No
null character terminates the array.

Using the following rules, you can omit braces when initializing the members
of a multidimensional arrays:

 When initializing arrays, you can omit the outermost pair of braces.

 If the initializer list includes all of the initializers for the object being
initialized, you can omit the inner braces.

32

Consider the following example :

float x[4][2] = {

 { 1, 2 }

 { 3, 4 }

 { 5, 6 }

};

In this example, 1 and 2 initialize the first row of the array x , and the
following two lines initialize the second and third rows, respectively. The
initialization ends before the fourth row is initialized, so the members of the
fourth row default to 0. Here is the result :

x[0][0] = 1;

x[0][1] = 2;

x[1][0] = 3;

x[1][1] = 4;

x[2][0] = 5;

x[2][1] = 6;

x[3][0] = 0;

x[3][1] = 0;

The following declaration achieves the same result :

 float x[4][2] = { 1, 2, 3, 4, 5, 6 };

Here, the compiler fills the array row by row with the available initial values.
The compiler places 1 and 2 in the first row (x[0]), 3 and 4 in the second row
(x[1]), and 5 and 6 in the third row (x[2]). The remaining members of the
array are initialized to zero.

Q.5. Compare and relate Pointers with Arrays.

Ans.: Pointers and Arrays : Data objects in an array can be referenced through

pointers instead of using array subscripts. The data type of such a pointer is
referred to as "pointer to array of type". The array name itself behaves like a

Algorithms and Data Structure 33

pointer, so there are several alternative methods to accessing array elements.
For example :

 int x[5] = { 0, 1, 2, 3, 4 }; /* Array x declared with five elements */

 int *p = x; /* Pointer declared and initialized to point */

 /* to the first element of the array x */

 int a, b;

 a = *(x + 3); /* Pointer x incremented by twelve bytes */

 /* to reference element 3 of x */

 b = x[3]; /* b now holds the same value as a */

In the previous example, a receives the value 3 by using the dereferencing
operator (*). b receives the same value by using the subscripting operator For
more information on the different unary operators.

Note that the assignment of a was a result of incrementing the pointer to x .
This principle, known as scaling, applies to all types of pointer arithmetic. In
scaling, the compiler considers the size of an array element when calculating
memory addresses of array members. For example, each member of the array
x is 4 bytes long, and adding three to the initial pointer value automatically
converts that addition to 3 * (the size of the array member, which in this case is
4). Therefore, the intuitive meaning of z = *(y + 3); is preserved.

When passing arrays as function arguments, only a pointer to the first element
of the array is passed to the called function. The conversion from array type to
pointer type is implicit. Once the array name is converted to a pointer to the
first element of the array, you can increment, decrement, or dereference the
pointer, just like any other pointer, to manipulate data in the array. For
example :

int func(int *x, int *y) /* The arrays are converted to pointers */

{

 *y = *(x + 4); /* Various elements of the arrays are
accessed */

}

34

Remember that a pointer is large enough to hold only an address; a pointer
into an array holds the address of an element of that array. The array itself is
large enough to hold all members of the array.

 When applied to arrays, the size of operator returns the size of the entire
array, not just the size of the first element in the array.

Q.6. How will you explain Record and Record Structure?

Record and record structures : The ::struct::record package provides a

mechanism to group variables together as one data structure, similar to a 'C'
structure. The members of a record can be variables or other records.
However, a record can not contain circular record, i.e. records that contain the
same record as a member.

This package was structured so that it is very similar to how Tk objects work.
Each record definition creates a record object that encompasses that definition.
Subsequently, that record object can create instances of that record. These
instances can then be manipulated with the cget and configure methods.

The package only contains one top level command, but several sub commands
(see below). It also obeys the namespace in which the record was define, hence
the objects returned are fully qualified.

record define recordName recordMembers ? instanceName1

instanceName2 ... ?

Defines a record. recordName is the name of the record, and is also used as an
object command. This object command is used to create instances of the record
definition. recordMembers are the members of the record that make up the
record definition. These are variables and other record. If optional
instanceName args are given, then an instance is generated after the definition
is created for each instanceName.

record show record

Returns a list of records that have been defined.

record show instances recordName

Returns the instances that have been instantiated by recordName.

record show members recordName

Algorithms and Data Structure 35

Returns the members that are defined for record recordName. It returns the
same format as how the records were defined.

record show values instanceName

Returns a list of values that are set for the instance instanceName. The output is
a list of key/value pairs. If there are nested records, then the values of the
nested records will itself be a list.

record exists record recordName

Tests for the existence of a record with the name recordName.

record exists instance instanceName

Tests for the existence of a instance with the name instanceName.

record delete record recordName

Deletes recordName, and all instances of recordName. It will return an error if
the record does not exist.

record delete instance instanceName

Deletes instance with the name of instanceName. It will return an error if the
instance does not exist.

Record Members : Record members can either be variables, or other records,
However, the same record can not be nested witin itself (circular). To define a
nested record, you need to specify the record keyword, along the with name of
the record, and the name of the instance of that nested record. For example, it
would look like this :

this is the nested record

record define mynestedrecord {

 nest1

 nest2

}

This is the main record

record define myrecord {

 mem1

36

 mem2

 {record mynestedrecord mem3}

}

□ □ □

Algorithms and Data Structure 37

Chapter-4

Strings

Q.1. What is the difference between a String and an Array?

Ans.: An array is an array of anything. A string is a specific kind of an array with a

well-known convention to determine its length.

There are two kinds of programming languages: those in which a string is just
an array of characters, and those in which it‘s a special type. In C, a string is
just an array of characters (type char), with one wrinkle: a C string always
ends with a NULL character. The ―value‖ of an array is the same as the
address of (or a pointer to) the first element; so, frequently, a C string and a
pointer to char are used to mean the same thing.
An array can be of any length. If it‘s passed to a function, there‘s no way the
function can tell how long the array is supposed to be, unless some convention
is used. The convention for strings is NULL termination; the last character is
an ASCII NULL (‗‘) character.

Q.2. What is the difference between Strings and Character Arrays?

Ans.: A major difference is: string will have static storage duration, whereas as a

character array will not, unless it is explicitly specified by using the static
keyword.

Actually, a string is a character array with following properties :

 The multi-byte character sequence, to which we generally call string, is
used to initialize an array of static storage duration. The size of this
array is just sufficient to contain these characters plus the terminating
NULL character.

 It not specified what happens if this array, i.e., string, is modified.

 So the value of a string is the sequence of the values of the contained
characters, in order.

38

Q.3. What is the difference between "calloc(...)" and "malloc(...)"?

Ans.: (1) calloc(...) allocates a block of memory for an array of elements of a

certain size. By default the block is initialized to 0. The total number of
memory allocated will be (number_of_elements * size).

malloc(...) takes in only a single argument which is the memory
required in bytes. malloc(...) allocated bytes of memory and not blocks
of memory like calloc(...).

(2) calloc(...) allocates an array in memory with elements initialized to 0
and returns a pointer to the allocated space. calloc(...) calls malloc(...) in
order to use the C++ _set_new_mode function to set the new handler
mode.

 malloc(...) allocates memory blocks and returns a void pointer to the
allocated space, or NULL if there is insufficient memory available.

Q.4. What is the purpose of realloc()?

Ans.: The function realloc(ptr,n) uses two arguments.the first argument ptr is a

pointer to a block of memory for which the size is to be altered. The second
argument n specifies the new size. The size may be increased or decreased. If n
is greater than the old size and if sufficient space is not available subsequent to
the old region, the function realloc() may create a new region and all the old
data are moved to the new region.

Q.5 What is difference between malloc()/free() and new/delete?

Ans.: malloc allocates memory for object in heap but doesn't invoke object's

constructor to initiallize the object.

new allocates memory and also invokes constructor to initialize the object.

malloc() and free() do not support object semantics

Does not construct and destruct objects

string * ptr = (string *)(malloc (sizeof(string)))

Are not safe

Does not calculate the size of the objects that it construct

Algorithms and Data Structure 39

Returns a pointer to void

int *p = (int *) (malloc(sizeof(int)));

int *p = new int;

Are not extensible

new and delete can be overloaded in a class

"delete" first calls the object's termination routine (i.e. its destructor) and then
releases the space the object occupied on the heap memory. If an array of
objects was created using new, then delete must be told that it is dealing with
an array by preceding the name with an empty []:-

Int_t *my_ints = new Int_t[10];

...

delete []my_ints;

Q.6. What is the difference between "new" and "operator new" ?

Ans.: "operator new" works like malloc.

Q.7. What is the difference between realloc() and free()?

Ans.: The free subroutine frees a block of memory previously allocated by the

malloc subroutine. Undefined results occur if the Pointer parameter is not a
valid pointer. If the Pointer parameter is a null value, no action will occur. The
realloc subroutine changes the size of the block of memory pointed to by the
Pointer parameter to the number of bytes specified by the Size parameter and
returns a new pointer to the block. The pointer specified by the Pointer
parameter must have been created with the malloc, calloc, or realloc
subroutines and not been deallocated with the free or realloc subroutines.
Undefined results occur if the Pointer parameter is not a valid pointer.

Q.8. Is it better to use malloc() or calloc()?

Ans.: Both the malloc() and the calloc() functions are used to allocate dynamic

memory. Each operates slightly different from the other. malloc() takes a size
and returns a pointer to a chunk of memory at least that big:

40

void *malloc(size_t size);

calloc() takes a number of elements, and the size of each, and returns a pointer
to a chunk of memory at least big enough to hold them all:

void *calloc(size_t numElements, size_t sizeOfElement);

There‘s one major difference and one minor difference between the two
functions. The major difference is that malloc() doesn‘t initialize the allocated
memory. The first time malloc() gives you a particular chunk of memory, the
memory might be full of zeros. If memory has been allocated, freed, and
reallocated, it probably has whatever junk was left in it. That means,
unfortunately, that a program might run in simple cases (when memory is
never reallocated) but break when used harder (and when memory is reused).
calloc() fills the allocated memory with all zero bits. That means that anything
there you‘re going to use as a char or an int of any length, signed or unsigned,
is guaranteed to be zero. Anything you‘re going to use as a pointer is set to all
zero bits. That‘s usually a null pointer, but it‘s not guaranteed.Anything
you‘re going to use as a float or double is set to all zero bits; that‘s a floating-
point zero on some types of machines, but not on all.

The minor difference between the two is that calloc() returns an array of
objects; malloc() returns one object. Some people use calloc() to make clear that
they want an array.

Q.9. Explain differences between eg. new() and malloc()

Ans.1: 1.) ―new and delete‖ are preprocessors while ―malloc() and free()‖ are

functions. [we dont use brackets will calling new or delete].

2.) No need of allocate the memory while using ―new‖ but in ―malloc()‖
we have to use ―sizeof()‖.

3.) ―new‖ will initlize the new memory to 0 but ―malloc()‖ gives random
value in the new alloted memory location [better to use calloc()]

Ans.2: new() allocates continous space for the object instace

malloc() allocates distributed space.

new() is castless, meaning that allocates memory for this specific type,
malloc(), calloc() allocate space for void * that is cated to the specific class type
pointer.

Algorithms and Data Structure 41

Q.10. String Processing --- Write out a function that prints out all the
permutations of a String. For example, abc would give you abc, acb, bac, bca,
cab, cba.

Ans.: void PrintPermu (char *sBegin, char* sRest) {

int iLoop;

char cTmp;

char cFLetter[1];

char *sNewBegin;

char *sCur;

int iLen;

static int iCount;

iLen = strlen(sRest);

if (iLen == 2) {

iCount++;

printf("%d: %s%s\n",iCount,sBegin,sRest);

iCount++;

printf("%d: %s%c%c\n",iCount,sBegin,sRest[1],sRest[0]);

return;

} else if (iLen == 1) {

iCount++;

printf("%d: %s%s\n", iCount, sBegin, sRest);

return;

} else {

// swap the first character of sRest with each of

// the remaining chars recursively call debug print

sCur = (char*)malloc(iLen);

42

sNewBegin = (char*)malloc(iLen);

for (iLoop = 0; iLoop < iLen; iLoop ++) {

strcpy(sCur, sRest);

strcpy(sNewBegin, sBegin);

cTmp = sCur[iLoop];

sCur[iLoop] = sCur[0];

sCur[0] = cTmp;

sprintf(cFLetter, "%c", sCur[0]);

strcat(sNewBegin, cFLetter);

debugprint(sNewBegin, sCur+1);

}

}

}

void main() {

char s[255];

char sIn[255];

printf("\nEnter a string:");

scanf("%s%*c",sIn);

memset(s,0,255);

PrintPermu(s, sIn);

Q.11. What is the difference between a string copy (strcpy) and a memory copy (memcpy)?
When should each be used?

Ans.: The strcpy() function is designed to work exclusively with strings. It copies
each byte of the source string to the destination string and stops when the
terminating null character () has been moved. On the other hand, the
memcpy() function is designed to work with any type of data. Because not all
data ends with a null character, you must provide the memcpy() function with
the number of bytes you want to copy from the source to the destination.

Algorithms and Data Structure 43

Q.12. How can I convert a String to a Number?

Ans. : The standard C library provides several functions for converting strings to

numbers of all formats (integers, longs, floats, and so on) and vice versa.

 The following functions can be used to convert strings to numbers :

Function Name Purpose

atof() Converts a string to a double-precision floating-point
value.

atoi() Converts a string to an integer.

atol() Converts a string to a long integer.

strtod() Converts a string to a double-precision floating-point
value and reports any leftover numbers that could not be
converted.

strtol() Converts a string to a long integer and reports any
leftover numbers that could not be converted.

strtoul() Converts a string to an unsigned long integer and reports
any leftover numbers that could not be converted.

Q13. How can I convert a Number to a String?

Ans.: The standard C library provides several functions for converting numbers of

all formats (integers, longs, floats, and so on) to strings and vice versa The
following functions can be used to convert integers to strings :

Function Name Purpose

itoa() Converts an integer value to a string.

ltoa() Converts a long integer value to a string.

ultoa() Converts an unsigned long integer value to a string.

The following functions can be used to convert floating-point values to strings
:

Function Name Purpose

ecvt() Converts a double-precision floating-point value to a
string without an embedded decimal point.

44

fcvt() Same as ecvt(), but forces the precision to a specified
number of digits.

gcvt() Converts a double-precision floating-point value to a
string with an embedded decimal point.

Q.14. Write a Program to interchange two variables without using the third one.

Ans.: a=7;

b=2;

a = a + b;

b = a - b;

a = a - b;

Q.15. How will you define String Processing along with the different String
Operations?

Ans.: String Processing (Storing Strings and String Operations) : In C, a string is

stored as a null-terminated char array. This means that after the last truly
usable char there is a null, hex 00, which is represented in C by '\0'. The
subscripts used for the array start with zero (0). The following line declares a
char array called str. C provides fifteen consecutive bytes of memory. Only the
first fourteen bytes are usable for character storage, because one must be used
for the string-terminating null.

 char str[15];

The following is a representation of what would be in RAM, if the string
"Hello, world!" is stored in this array.

Characters: H e l l o , w o r l d !

Hex values: 48 65 6C 6C 6F 2C 20 77 6F 71 6C 64 21 00

Subscripts: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The name of the array is treated as a pointer to the array. The subscript serves
as the offset into the array, i.e., the number of bytes from the starting memory
location of the array. Thus, both of the following will save the address of the
0th character in the pointer variable ptr.

Algorithms and Data Structure 45

 ptr = str;

 ptr = &str[0];

strlen()

Syntax : len = strlen(ptr);

where len is an integer and ptr is a pointer to char

strlen() returns the length of a string, excluding the null. The following code
will result in len having the value 13.

int len;

char str[15];

strcpy(str, "Hello, world!");

len = strlen(str);

 strcpy()

Syntax: strcpy(ptr1, ptr2);

 where ptr1 and ptr2 are pointers to char

strcpy() is used to copy a null-terminated string into a variable. Given the
following declarations, several things are possible.

 char S[25];

 char D[25];

 Putting text into a string:

 strcpy(S, "This is String 1.");

 Copying a whole string from S to D:

 strcpy(D, S);

 Copying the tail end of string S to D:

 strcpy(D, &S[8]);

 Strncpy()

Syntax: strncpy(ptr1, ptr2, n);

where n is an integer and ptr1 and ptr2 are pointers to char

46

strncpy() is used to copy a portion of a possibly null-terminated string into a
variable. Care must be taken because the '\0' is put at the end of destination
string only if it is within the part of the string being copied. Given the
following declarations, several things are possible.

 char S[25];

 char D[25];

Assume that the following statement has been executed before each of the
remaining code fragments.

 Putting text into the source string:

 strcpy(S, "This is String 1.");

 Copying four characters from the beginning of S to D and placing a null
at the end:

 strncpy(D, S, 4);

 D[4] = '\0';

 Copying two characters from the middle of string S to D:

 strncpy(D, &S[5], 2);

 D[2] = '\0';

 Copying the tail end of string S to D:

 strncpy(D, &S[8], 15);

 which produces the same result as strcpy(D, &S[8]);

 strcat()

Syntax: strcat(ptr1, ptr2);

where ptr1 and ptr2 are pointers to char

strcat() is used to concatenate a null-terminated string to end of another string
variable. This is equivalent to pasting one string onto the end of another,
overwriting the null terminator. There is only one common use for strcat().

 char S[25] = "world!";

 char D[25] = "Hello, ";

 Concatenating the whole string S onto D:

Algorithms and Data Structure 47

 strcat(D, S);

 strncat()

Syntax: strncat(ptr1, ptr2, n);

where n is an integer and ptr1 and ptr2 are pointers to char

strncat() is used to concatenate a portion of a possibly null-terminated string
onto the end of another string variable. Care must be taken because some
earlier implementations of C do not append the '\0' at the end of destination
string. Given the following declarations, several things are possible, but only
one is commonly used.

char S[25] = "world!";

char D[25] = "Hello, ";

 Concatenating five characters from the beginning of S onto the end of D
and placing a null at the end:

 strncat(D, S, 5);

 strncat(D, S, strlen(S) -1);

 Both would result in D containing "Hello, world".

N.B. If you fail to ensure that the source string is null-terminated, very strange
and sometimes very ugly things may result.

 strcmp()

Syntax : diff = strcmp(ptr1, ptr2);

where diff is an integer and ptr1 and ptr2 are pointers to char

strcmp() is used to compare two strings. The strings are compared character
by character starting at the characters pointed at by the two pointers. If the
strings are identical, the integer value zero (0) is returned. As soon as a
difference is found, the comparison is halted and if the ASCII value at the
point of difference in the first string is less than that in the second (e.g. 'a' 0x61
vs. 'e' 0x65) a negative value is returned; otherwise, a positive value is
returned. Examine the following examples.

char s1[25] = "pat";

char s2[25] = "pet";

48

diff will have a negative value after the following statement is executed.

diff = strcmp(s1, s2);

diff will have a positive value after the following statement is executed.

diff = strcmp(s2, s1);

diff will have a value of zero (0) after the execution of the following statement,
which compares s1 with itself.

 diff = strcmp(s1, s1);

 strncmp()

Syntax: diff = strncmp(ptr1, ptr2, n);

where diff and n are integers ptr1 and ptr2 are pointers to char

strncmp() is used to compare the first n characters of two strings. The strings
are compared character by character starting at the characters pointed at by
the two pointers. If the first n strings are identical, the integer value zero (0) is
returned. As soon as a difference is found, the comparison is halted and if the
ASCII value at the point of difference in the first string is less than that in the
second (e.g. 'a' 0x61 vs. 'e' 0x65) a negative value is returned; otherwise, a
positive value is returned. Examine the following examples.

char s1[25] = "pat";

char s2[25] = "pet";

diff will have a negative value after the following statement is executed.

diff = strncmp(s1, s2, 2);

diff will have a positive value after the following statement is executed.

diff = strncmp(s2, s1, 3);

diff will have a value of zero (0) after the following statement.

diff = strncmp(s1, s2, 1);

 Q.16. How can we replace single character in a String?

Ans.: Single characters can be replaced in a string. Given the following declarations,

several things are possible.

Algorithms and Data Structure 49

char str[25] = "cot";

char ch = 'u';

char D[25] = "pat";

 Replacing a single character using a char variable:

 D[1] = ch;

 This would result in D containing "put".

 Replacing a single character using a char literal:

 D[1] = 'e';

 This would result in D containing "pet".

 Replacing a single character using a single character from a string
variable:

 D[1] = str[1];

 This would result in D containing "pot".

 Q.17. What do you mean by Pattern Matching?

Ans.: In computer science, pattern matching is the act of checking for the presence

of the constituents of a given pattern. In contrast to pattern recognition, the
pattern is rigidly specified. Such a pattern concerns conventionally either
sequences or tree structures. Pattern matching is used to test whether things
have a desired structure, to find relevant structure, to retrieve the aligning
parts, and to substitute the matching part with something else. Sequence (or
specifically text string) patterns are often described using regular expressions
(i.e. backtracking) and matched using respective algorithms. Sequences can
also be seen as trees branching for each element into the respective element
and the rest of the sequence, or as trees that immediately branch into all
elements.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Pattern
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Backtracking

50

Chapter-5

C++ : Classes and Objects

Q.1. What is C++?

Ans.: Released in 1985, C++ is an object-oriented programming language created by
Bjarne Stroustrup. C++ maintains almost all aspects of the C language, while
simplifying memory management and adding several features - including a
new datatype known as a class (you will learn more about these later) - to
allow object-oriented programming. C++ maintains the features of C which
allowed for low-level memory access but also gives the programmer new tools
to simplify memory management.

C++ used for : C++ is a powerful general-purpose programming language. It

can be used to create small programs or large applications. It can be used to
make CGI scripts or console-only DOS programs. C++ allows you to create
programs to do almost anything you need to do. The creator of C++, Bjarne
Stroustrup, has put together a partial list of applications written in C++.

Q.2. What is difference between C & C++?

Ans.:

 C does not have a class/object concept.

 C++ provides data abstraction, data encapsulation, Inheritance and
Polymorphism.

 C++ supports all C syntax.

 In C passing value to a function is "Call by Value" whereas in C++ its
"Call by Reference".

 File extension is .c in C while .cpp in C++.(C++ compiler compiles the
files with .c extension but C compiler can not!).

Algorithms and Data Structure 51

 In C structures can not have contain functions declarations. In C++
structures are like classes, so declaring functions is legal and allowed.

 C++ can have inline/virtual functions for the classes.

 c++ is C with Classes hence C++ while in c the closest u can get to an
User defined data type is struct and union.

Q.3. What is an Object?

Ans.: Object is a software bundle of variables and related methods. Objects have

state and behavior.

Q.4. What is a Class?

Ans.: Class is a user-defined data type in C++. It can be created to solve a particular

kind of problem. After creation the user need not know the specifics of the
working of a class.

Q.5. What is the difference between Class and Structure?

Ans.: Structure : Initially (in C) a structure was used to bundle different type of data

types together to perform a particular functionality. But C++ extended the
structure to contain functions also. The major difference is that all declarations
inside a structure are by default public.

Class : Class is a successor of Structure. By default all the members inside the

class are private.

Q.6. What is the difference between an Object and a Class?

Ans.: Classes and objects are separate but related concepts. Every object belongs to a

class and every class contains one or more related objects.

 A Class is static. All of the attributes of a class are fixed before, during,
and after the execution of a program. The attributes of a class don't change.

 The class to which an object belongs is also (usually) static. If a
particular object belongs to a certain class at the time that it is created then it almost
certainly will still belong to that class right up until the time that it is destroyed.

52

 An Object on the other hand has a limited lifespan. Objects are created
and eventually destroyed. Also during that lifetime, the attributes of the object may
undergo significant change.

Q.7. What is Virtual Class and Friend Class?

Ans.: Friend classes are used when two or more classes are designed to work

together and need access to each other's implementation in ways that the rest
of the world shouldn't be allowed to have. In other words, they help keep
private things private. For instance, it may be desirable for class
DatabaseCursor to have more privilege to the internals of class Database than
main() has.

 Virtual class is used for run time polymorphism when object is linked to
procedure call at run time. or is an inner class that can be overridden by
derived classes of the outer class.

Q.8. What is the word you will use when defining a function in base class to

allow this function to be a Polymorphic Function?

Ans.: Virtual

Q.9. What do you mean by Binding of Data and Functions?

Ans.: Encapsulation.

Q.10. What is Friend Function?

Ans.: As the name suggests, the function acts as a friend to a class. As a friend of a

class, it can access its private and protected members. A friend function is not
a member of the class. But it must be listed in the class definition.

Q.11. What is a Scope Resolution Operator?

Ans.: A scope resolution operator (::), can be used to define the member functions of

a class outside the class. Example of SRO

Algorithms and Data Structure 53

 e.g.
 ….
 ….
 {

 int x = 10;
 ….

 ….
 {
 int x = 20;

 …..
 ….

 }
 ….
 }

 The declaration of the inner block hides the declaration of same variable in outer

 block. This means, within the inner block, the variable x will refer to the data object
 declared therein. To access the global version of the variable, C++ provides scope

 resolution operator.

Q.12. What do you mean by Inheritance?

Ans.: Inheritance is the process of creating new classes, called derived classes, from

existing classes or base classes. The derived class inherits all the capabilities of
the base class, but can add embellishments and refinements of its own.

Q.13. What are the advantages of Inheritance?

Ans.: It permits code reusability. Reusability saves time in program development. It

encourages the reuse of proven and debugged high-quality software, thus
reducing problem after a system becomes functional.

Q.14. Does c++ support Multilevel and Multiple Inheritance?

Ans.: Yes.

Q.15. What do you mean by Inline Function?

54

Ans.: The idea behind inline functions is to insert the code of a called function at the

point where the function is called. If done carefully, this can improve the
application's performance in exchange for increased compile time and possibly
(but not always) an increase in the size of the generated binary executables.
Example:

Q.16. What are Templates?

Ans.1. C++ Templates allow u to generate families of functions or classes that can

operate on a variety of different data types, freeing you from the need to create
a separate function or class for each type. Using templates, u have the
convenience of writing a single generic function or class definition, which the
compiler automatically translates into a specific version of the function or
class, for each of the different data types that your program actually uses.
Many data structures and algorithms can be defined independently of the type
of data they work with. You can increase the amount of shared code by
separating data-dependent portions from data-independent portions, and
templates were introduced to help you do that.

Ans.2. Templates allow to create generic functions that admit any data type as

parameters and return value without having to overload the function with all
the possible data types. Until certain point they fulfill the functionality of a
macro. Its prototype is any of the two following ones :

template <class indetifier> function_declaration; template <typename
indetifier> function_declaration;

The only difference between both prototypes is the use of keyword class or
typename, its use is indistinct since both expressions have exactly the same
meaning and behave exactly the same way.

Q.17. What is the difference between Declaration and Definition?

Ans.: The declaration tells the compiler that at some later point we plan to present
the definition of this declaration.

E.g.: void stars () //function declaration

Algorithms and Data Structure 55

The definition contains the actual implementation.

E.g.: void stars () // declarator

{

for(int j=10; j > =0; j--) //function body

cout << *;

cout << endl; }

Q.18. What is Operator Overloading?

Ans.: When an operator is overloaded, it takes on an additional meaning relative to

a certain class. But it can still retain all of its old meanings.

Examples :

1) The operators >> and << may be used for I/O operations because in the
header, they are overloaded.

2) In a stack class it is possible to overload the + operator so that it
appends the contents of one stack to the contents of another. But the +
operator still retains its original meaning relative to other types of data.

Q.19. What is Function Overloading and Operator Overloading?

Ans.: Function overloading: C++ enables several functions of the same name to be

defined, as long as these functions have different sets of parameters (at least as

far as their types are concerned). This capability is called function overloading.

When an overloaded function is called, the C++ compiler selects the proper

function by examining the number, types and order of the arguments in the

call. Function overloading is commonly used to create several functions of the

same name that perform similar tasks but on different data types.

Operator overloading allows existing C++ operators to be redefined so that

they work on objects of user-defined classes. Overloaded operators are

syntactic sugar for equivalent function calls. They form a pleasant facade that

doesn't add anything fundamental to the language (but they can improve

understandability and reduce maintenance costs).

56

Q.20. Define a Constructor. What it is and how it might be called (2 methods)?

Ans.1: constructor is a member function of the class, with the name of the function

being the same as the class name. It also specifies how the object should be
initialized.

Ways of calling constructor :

1) Implicitly : automatically by complier when an object is created.

2) Calling the constructors explicitly is possible, but it makes the code
unverifiable.

 Example class Point2D{

int x; int y;

public Point2D() : x(0) , y(0) {} //default (no argument) constructor

};

main(){

Point2D MyPoint; // Implicit Constructor call. In order to allocate memory on
stack, the default constructor is implicitly called.

Point2D * pPoint = new Point2D(); // Explicit Constructor call. In order to
allocate memory on HEAP we call the default constructor.

Q.21. What are Virtual Constructors/Destructors?

Ans.1: Virtual Destructors : If an object (with a non-virtual destructor) is destroyed
explicitly by applying the delete operator to a base-class pointer to the object,
the base-class destructor function (matching the pointer type) is called on the
object.

There is a simple solution to this problem declare a virtual base-class
destructor.

This makes all derived-class destructors virtual even though they don‘t have
the same name as the base-class destructor. Now, if the object in the hierarchy
is destroyed explicitly by applying the delete operator to a base-class pointer
to a derived-class object, the destructor for the appropriate class is called.

Algorithms and Data Structure 57

Virtual constructor: Constructors cannot be virtual. Declaring a constructor as
a virtual function is a syntax error.

Ans.2: Virtual Destructors : If an object (with a non-virtual destructor) is destroyed

explicitly by applying the delete operator to a base-class pointer to the object,
the base-class destructor function (matching the pointer type) is called on the
object.

There is a simple solution to this problem – declare a virtual base-class
destructor. This makes all derived-class destructors virtual even though they
don‘t have the same name as the base-class destructor. Now, if the object in
the hierarchy is destroyed explicitly by applying the delete operator to a base-
class pointer to a derived-class object, the destructor for the appropriate class
is called.

Virtual Constructor : Constructors cannot be virtual. Declaring a constructor

as a virtual function is a syntax error.

Q.22. What is Encapsulation?

Ans.: Packaging an object‘s variables within its methods is called encapsulation.

Q.23. Explain term Polymorphism and give an example using eg. SHAPE object. If
I have a base class SHAPE, how would I define DRAW methods for two
objects CIRCLE and SQUARE?

Ans.1: Polymorphism : 'Polymorphism' is an object oriented term. Polymorphism

may be defined as the ability of related objects to respond to the same message
with different, but appropriate actions. In other words, polymorphism means
taking more than one form. Polymorphism leads to two important aspects in
Object Oriented terminology - Function Overloading and Function
Overriding. Overloading is the practice of supplying more than one definition
for a given function name in the same scope. The compiler is left to pick the
appropriate version of the function or operator based on the arguments with
which it is called. Overriding refers to the modifications made in the sub class
to the inherited methods from the base class to change their behavior.

 In other words Polymorphism is a phenomenon which enables an object to

react differently to the same function call.

In C++ it is attained by using a keyword virtual.

58

Example :

public class SHAPE

{

public virtual void SHAPE::DRAW()=0;

}

Note here the function DRAW() is pure virtual which means the sub classes
must implement the DRAW() method and SHAPE cannot be instatiated

public class CIRCLE::public SHAPE

{

public void CIRCLE::DRAW()

{

// TODO drawing circle

}

}

public class SQUARE::public SHAPE

{

public void SQUARE::DRAW()

{

// TODO drawing square

}

}

now from the user class the calls would be like

Algorithms and Data Structure 59

globally

SHAPE *newShape;

When user action is to draw

public void MENU::OnClickDrawCircle(){

newShape = new CIRCLE();

}

public void MENU::OnClickDrawCircle(){

newShape = new SQUARE();

}

the when user actually draws

public void CANVAS::OnMouseOperations(){

newShape->DRAW();

}

Ans.3: class SHAPE{

public virtual Draw() = 0; //abstract class with a pure virtual method

};

class CIRCLE{

public int r;

public virtual Draw() { this->drawCircle(0,0,r); }

};

class SQURE

public int a;

60

public virtual Draw() { this->drawRectangular(0,0,a,a); }

};

Each object is driven down from SHAPE implementing Draw() function in its
own way.

Q.24. Describe Private, Protected and Public – the differences and give examples.

Ans.1: Public, protected and private are three access specifier in C++.

Public data members and member functions are accessible outside the class.

Protected data members and member functions are only available to derived
classes.

Private data members and member functions can‘t be accessed outside the
class. However there is an exception can be using friend classes.

Write a function that swaps the values of two integers, using int* as the
argument type.

void swap(int* a, int*b) {

int t;

t = *a;

*a = *b;

*b = t;

}

Ans.2: class Point2D{

int x; int y;

public int color;

protected bool pinned;

public Point2D() : x(0) , y(0) {} //default (no argument) constructor

};

Point2D MyPoint;

Algorithms and Data Structure 61

You cannot directly access private data members when they are declared
(implicitly)

private:

MyPoint.x = 5; // Compiler will issue a compile ERROR

//Nor yoy can see them:

int x_dim = MyPoint.x; // Compiler will issue a compile ERROR

On the other hand, you can assign and read the public data members:

MyPoint.color = 255; // no problem

int col = MyPoint.color; // no problem

With protected data members you can read them but not write them:
MyPoint.pinned = true; // Compiler will issue a compile ERROR

bool isPinned = MyPoint.pinned; // no problem

Q.25. Write a Program that ask for user input from 5 to 9 then calculate the
average.

Ans.: #include "iostream.h"

int main() {

int MAX = 4;

int total = 0;

int average;

int numb;

for (int i=0; i<MAX; i++) {

cout << "Please enter your input between 5 and 9: ";

cin >> numb;

while (numb<5 || numb>9) {

cout << "Invalid input, please re-enter: ";

cin >> numb;

}

62

total = total + numb;

}

average = total/MAX;

cout << "The average number is: " << average << "\n";

return 0;

}

Q.26. Write a short code using C++ to print out all odd number from 1 to 100
using a for loop.

Ans.: for(unsigned int i = 1; i < = 100; i++)

if(i & 0x00000001)

cout << i << \",\";

□ □ □

Algorithms and Data Structure 63

Chapter-6

Linked List

Q.1. What is the difference between an Array and a List?

Ans.1: Array is collection of homogeneous elements.

List is collection of heterogeneous elements.

For Array, memory allocated is static and continuous.

For List, memory allocated is dynamic and random.

Array : User need not have to keep in track of next memory allocation.

List : User has to keep in Track of next location where memory is allocated.

 For Example: Array uses direct access of stored members, list uses

sequential access for members.

//With Array you have direct access to memory position 5

Object x = a[5]; // x takes directly a reference to 5th element of array

//With the list you have to cross all previous nodes in order to get the 5th
node:

list mylist;

list::iterator it;

for(it = list.begin() ; it != list.end() ; it++)

{

if(i==5)

{

x = *it;

break;

64

}

i++;

}

Q.2. How can I search for data in a Linked List?

Ans.: Unfortunately, the only way to search a linked list is with a linear search,

because the only way a linked list‘s members can be accessed is sequentially.
Sometimes it is quicker to take the data from a linked list and store it in a
different data structure so that searches can be more efficient.

Q.3. What is Static Memory Allocation and Dynamic Memory Allocation?

Ans.: Static Memory Allocation : The compiler allocates the required memory space

for a declared variable. By using the address of operator, the reserved address
is obtained and this address may be assigned to a pointer variable. Since most
of the declared variables have static memory, this way of assigning pointer
value to a pointer variable is known as static memory allocation. Memory is
assigned during compilation time.

Dynamic Memory Allocation : It uses functions such as malloc() or calloc()
to get memory dynamically. If these functions are used to get memory
dynamically and the values returned by these functions are assigned to
pointer variables, such assignments are known as dynamic memory allocation.
Memory is assigned during run time.

Q.4. Linked List-Compilation. How to reduce a final size of executable?

Ans.: Size of the final executable can be reduced using dynamic linking for libraries.

Q.5. What is a NULL Pointer?

Ans.: There are times when it‘s necessary to have a pointer that doesn‘t point to

anything. The macro NULL, defined in , has a value that‘s guaranteed to be
different from any valid pointer. NULL is a literal zero, possibly cast to void*

Algorithms and Data Structure 65

or char*. Some people, notably C++ programmers, prefer to use 0 rather than
NULL.

The null pointer is used in three ways :

1) To stop indirection in a recursive data structure

2) As an error value

3) As a sentinel value

Q.6 Why should we assign NULL to the elements (pointer) after freeing them?

Ans.: This is paranoia based on long experience. After a pointer has been freed, you

can no longer use the pointed-to data. The pointer is said to dangle; it doesn‘t
point at anything useful. If you NULL out or zero out a pointer immediately
after freeing it, your program can no longer get in trouble by using that
pointer. True, you might go indirect on the null pointer instead, but that‘s
something your debugger might be able to help you with immediately. Also,
there still might be copies of the pointer that refer to the memory that has been
deallocated; that‘s the nature of C. Zeroing out pointers after freeing them
won‘t solve all problems.

Q.7. Is NULL always defined as 0?

Ans.: NULL is defined as either 0 or (void*)0. These values are almost identical;

either a literal zero or a void pointer is converted automatically to any kind of
pointer, as necessary, whenever a pointer is needed (although the compiler
can‘t always tell when a pointer is needed).

Q.8. What is the difference between NULL and NUL?

Ans.: NULL is a macro defined in for the null pointer.

NUL is the name of the first character in the ASCII character set. It
corresponds to a zero value. There‘s no standard macro NUL in C, but some
people like to define it.

The digit 0 corresponds to a value of 80, decimal. Don‘t confuse the digit 0
with the value of ‗‘ (NUL)! NULL can be defined as ((void*)0), NUL as ‗‘.

66

Q.9. How can I sort a Linked List?

Ans.: Both the merge sort and the radix sort are good sorting algorithms to use for

linked lists.

 Q.10. Tell how to check whether a Linked List is circular?

Ans.: Create two pointers, and set both to the start of the list. Update each as follows

:

while (pointer1) {

pointer1 = pointer1->next;

pointer2 = pointer2->next;

if (pointer2) pointer2=pointer2->next;

if (pointer1 == pointer2) {

print ("circular");

}

}
If a list is circular, at some point pointer2 will wrap around and be either at the
item just before pointer1, or the item before that. Either way, its either 1 or 2
jumps until they meet.

□ □ □

Algorithms and Data Structure 67

Chapter-7

Stacks

Q.1. What is Stack?

Ans.: A stack is a limited version of an array. New elements, or nodes as they are

often called, can be added to a stack and removed from a stack only from one

end. For this reason, a stack is referred to as a LIFO structure (Last-In First-

Out).

Stacks have many applications. For example, as processor executes a program,

when a function call is made, the called function must know how to return

back to the program, so the current address of program execution is pushed

onto a stack. Once the function is finished, the address that was saved is

removed from the stack, and execution of the program resumes. If a series of

function calls occur, the successive return values are pushed onto the stack in

LIFO order so that each function can return back to calling program. Stacks

support recursive function calls in the same manner as conventional non

recursive calls.

Stacks are also used by compilers in the process of evaluating expressions and

generating machine language code. They are also used to store return

addresses in a chain of method calls during execution of a program.

Q.2. How can we declare a Stack using an Array?

Ans.: Stack Declaration Using an Array : Suppose elements of the stack are of type

int and the stack can store a maximum of 10 elements.

#define MAX 10

68

typedef struct

{

 int top;

 int elements[MAX];

}stack;

stack s;

 Here we have defined our own data type named stack.

 The first element ―top‖ will be used to index the topmost element

 Array ―elements‖ holds the elements of the stack

 The last line declares a variable ―s‖ of type stack

 Representation of Stack in Memory :

Q.3. Tell the different operations used in Stacks.

Ans.1: Operations : An abstract data type (ADT) consists of a data structure and a set

of primitive operations. The main primitives of a stack are known

as :

Push adds a new node

Pop removes a node

Additional primitives can be defined :

Algorithms and Data Structure 69

IsEmpty reports whether the stack is empty

IsFull reports whether the stack is full

Initialise creates/initialises the stack

Destroy deletes the contents of the stack (may be implemented by re-

initialising the stack)

Initialise creates the structure – i.e. ensures that the structure exists but

contains no elements

e.g. Initialise(S) creates a new empty stack named S

Push

e.g. Push(X,S) adds the value X to the TOP of stack S

 Pop

e.g. Pop(S) removes the TOP node and returns its value

70

s.push(‗F‘); s.pop(); s.pop(); s.pop();

 returns F returns B returns A

 We could try the same example with actual values for A, B and C.

A = 1 B = 2 C = 3

Ans.2: The STACK Data Structure :

Exercise : Stack Operations

1. What would the state of a stack be after the following operations :

create stack

push A onto stack

push F onto stack

push X onto stack

pop item from stack

push B onto stack

pop item from stack

pop item from stack

Algorithms and Data Structure 71

2. Show the state of the stack and the value of each variable after
execution of each of the following statements :

A = 5 B = 3 C = 7

(a) create stack

push A onto stack

push C*C onto stack

pop item from stack and store in B

push B+A onto stack

pop item from stack and store in A

pop item from stack and store in B

(b) create stack

push B onto stack

push C onto stack

push A onto stack

A = B * C

push A+C onto stack

pop item from stack and store in A

pop item from stack and store in B

pop item from stack and store in C

Stack Implementation : The Java Collections Framework includes a set of

ready made data structure classes, including a Stack class. However, you will
create your own stack class in order to learn how a stack is implemented. Your
class will be a bit simpler than the Collections Framework one but it will do
essentially the same job.

Q.4. Differentiate between Static and Dynamic Data Structures.

Ans.: Static and Dynamic Data Structures :

A stack can be stored in :

72

• a static data structure

OR

• a dynamic data structure

Static Data Structures : These define collections of data which are fixed in size

when the program is compiled.

An array is a static data structure.

Dynamic data structures : These define collections of data which are variable

in size and structure. They are created as the program executes, and grow and
shrink to accommodate the data being stored.

Q.5. Define Stacks & Lists in terms of implementing algorithms with the various
operations.

Ans.: Stacks & Lists : Stacks and Lists are basic data structures that you need to

know about when implementing algorithms.

A stack can be regarded as an array of data elements, that needs to be filled.
There are 2 different kinds of stacks. FIFO stack and LIFO stack.

FIFO is short for First in, First out . That is, the first element that is added to

the array will also be the first to be removed.

LIFO is short for Last in, First out . That is, the last element being added to the

array will be the first to be removed.

The Stack Pointer . Another important thing is, that all stacks, be it FIFO or

LIFO have a so called stack pointer. The stack pointer marks the last element
of the array.

Push and Pop : Push and pop are the basic operations executed on a stack.

Push means, to add another item to the stack. Pop means, to remove another

item from the stack.

Push and Pop are usually implemented as functions but they could also be

implemented as a loop in the main program.

Implementing a LIFO stack. Now comes the fun. We are going to implement
a LIFO stack. Before starting coding we may need gather our basic
informations about the stack.

Algorithms and Data Structure 73

Since its a LIFO stack, we may implement it as an array. Remember that LIFO
means Last in, First out, so we need to assure that the last element being
added will be the first to be released. This is a rather straightforward
operation, since all arrays usually grow from bottom to top and we can simply
remove the last element being added.

 /* allocating an array with 10 elemets used as stack */

int* stack;

int StackInit(int i)

{

 stack = malloc(i*(sizeof(int));

 return stack;

}

In this code snippet, the stack is defined as global variable, because it needs to
be accessible to all other functions.

void push(int elem)

{

 stack[++top] = elem;

}

int pop(int elem)

{

 return stack[elem--];

}

The code above shows possible implementations of push and pop . The

implementation is hold easy to demonstrate their functionality. In a real-world
program you would have to check if the stack is empty or already filled, if the
stack is full etc.

Push and pop could than be used as follows :

int main()

{

74

 int j = 10;

 int l;

 /* allocating a stack */

 stackinit(j);

 /* fill the stack with 10 items */

 for(l=0;l<=10;l++){

 push(l);

 /* we have 10 items in the stack, so quit */

 if(l >= 10)

 {

 break;

 exit(1);

 }

 }

 /* pop out all items of the stack */

 int k;

 for(k = 10;k>=0;k--)

 {

 pop(k);

 if(k <= 0)

 {

 break;

 exit(1);

 }

 }

 return 0;

}

Algorithms and Data Structure 75

This program is rather simple. First it allocates space for the stack and then it

uses push and pop operations to fill and empty the stack.

Lists Lists are another basic and popular data structure. Thats why some High

Level programming languages like C++ and Java have implemented them in

their libraries. In C you need to build your own List. This is usually done with

a struct.

typedef struct LinkedList

{

 struct LinkedList* head;

 struct LinkedList* next;

};

struct LinkedList list;

Having defined this list as a new data type you can use it like you would use

any other elementary data type of C.

Basic List operations: Basic List operations are: insert an item, delete an item,

move an item. However, before doing any operation on lists, you need to

allocate memory for the list.

struct* LinkedList InitList(struct LinkedList* p)

{

 if(p =

 malloc(x*sizeof(LinkedList))

 == NULL)

 printf("Error! Unable to allocate memory");

 else

 {

 p = p->next;

 p->next = NULL;

76

 }

 return p;

}

This function is rather simple. It allocates memory for the list dynamically as

we have done with the stack. But it does a little bit more. It also sets the

pointer p as the one and only element, that is, it is the first and the last element

of the list.

Note : This code may not work when compiled with ANSI-C comformity

because ANSI-C does not allow use of reference operator on the left hand side

of an assignment .

□ □ □

Algorithms and Data Structure 77

Chapter-8

Queue

 Q.1. What is Queue?

Ans.: In general, a queue is a line of people or things waiting to be handled, usually
in sequential order starting at the beginning or top of the line or sequence. In
computer technology, a queue is a sequence of work objects that are waiting to
be processed. The possible factors, arrangements, and processes related to
queues is known as queueing theory.

Queue is a linear data structure in which data can be added to one end and
retrieved from the other. Just like the queue of the real world, the data that
goes first into the queue is the first one to be retrieved. That is why queues are
sometimes called as First-In-First-Out data structure.

In case of queues, we saw that data is inserted both from one end but in case of
Queues; data is added to one end (known as REAR) and retrieved from the
other end (known as FRONT).

The data first added is the first one to be retrieved while in case of queues the
data last added is the first one to be retrieved.

A few points regarding Queues:

Queues: It is a linear data structure; linked lists and arrays can represent it.
Although representing queues with arrays have its shortcomings but due to
simplicity, we will be representing queues with arrays in this article.

Rear: A variable stores the index number in the array at which the new data
will be added (in the queue).

Front: It is a variable storing the index number in the array where the data will
be retrieved.

Let us have look at the process of adding and retrieving data in the queue with
the help of an example.

http://whatis.techtarget.com/definition/0,,sid9_gci212853,00.html

78

Suppose we have a queue represented by an array queue [10], which is empty
to start with. The values of front and rear variable upon different actions are
mentioned in {}.

queue [10]=EMPTY {front=-1, rear=0}

add (5)

Now, queue [10] = 5 {front=0, rear=1}

add (10)

Now, queue [10] = 5, 10 {front=0, rear=2}

retrieve () [It returns 5]

Now, queue [10] = 10 {front=1, rear=2}

retrieve () [now it returns 10]

Now, queue [10] is again empty {front=-1, rear=-1}

Q.2. Compare Stacks with Queue.

Ans.: In programming, a queue is a data structure in which elements are removed in
the same order they were entered. This is often referred to as FIFO (first in,
first out). In contrast, a stack is a data structure in which elements are removed
in the reverse order from which they were entered. This is referred to as LIFO
(last in, first out).

A stack is an ordered list in which all insertions and deletions are made at one
end, called the top. A queue is an ordered list in which all insertions take place
at one end, the rear, while all deletions take place at the other end, the front.
Given a stack S=(a[1],a[2],.......a[n]) then we say that a1 is the bottommost
element and element a[i]) is on top of element a[i-1], 1<i<=n. When viewed as
a queue with a[n] as the rear element one says that a[i+1] is behind a[i],
1<i<=n.

http://www.webopedia.com/TERM/Q/program.html
http://www.webopedia.com/TERM/Q/data_structure.html
http://www.webopedia.com/TERM/Q/stack.html

Algorithms and Data Structure 79

The restrictions on a stack imply that if the elements A,B,C,D,E are added to
the stack, n that order, then the first element to be removed/deleted must be
E. Equivalently we say that the last element to be inserted into the stack will
be the first to be removed. For this reason stacks are sometimes referred to as
Last In First Out (LIFO) lists. The restrictions on queue imply that the first
element which is inserted into the queue will be the first one to be removed.
Thus A is the first letter to be removed, and queues are known as First In First
Out (FIFO) lists. Note that the data object queue as defined here need not
necessarily correspond to the mathemathical concept of queue in which the
insert/delete rules may be different.

 Q.3. Describe the different operations on Queue.

Ans.:

Queue constructor construct a new queue

back returns a reference to last element of a queue

empty true if the queue has no elements

front returns a reference to the first element of a queue

pop removes the first element of a queue

push adds an element to the end of the queue

size returns the number of items in the queue

 Priority Queue :

A Priority queue is a collection of zero or more elements. Each element has a
priority or a value. The operations performed on a priority queue are :

1) Find an element

2) Insert a new element

3) Delete an element

http://www.cppreference.com/cppqueue/queue_constructor.html
http://www.cppreference.com/cppqueue/back.html
http://www.cppreference.com/cppqueue/empty.html
http://www.cppreference.com/cppqueue/front.html
http://www.cppreference.com/cppqueue/pop.html
http://www.cppreference.com/cppqueue/push.html
http://www.cppreference.com/cppqueue/size.html

80

In “Min Priority Queue” the find operation finds the element with minimum

priority, while the delete operation deletes it.

In “Max Priority Queue” the find operation finds the element with maximum

priority, while the delete operation deletes it.

Unlike the general queues which are FIFO structures , the order of deletion
from a priority queue is determined by the element priority. Elements are
deleted either in increasing or decreasing order of priority from a priority
queue.

A priority queue can be implemented by using

1) Heap

2) Height and Weight balanced leftist trees.

#include<iostream.h>

class searching

{

private:

 double *array;

 int n;

public:

 void input();

 void bubblesort();

 void binarysearch();

};

void searching::input()

{

 cout<<‖**\n‖

 <<‖This program is to implement binary search algorithm\n‖

 <<‖**\n‖;

 cout<<‖Enter how many numbers you are going to enter::‖;

Algorithms and Data Structure 81

 cin>>n;

 array=new double[n+1];

 cout<<‖Now enter your elements ::\n‖;

 for(int i=1;i<=n;i++)

 cin>>array[i];

}

void searching::bubblesort()

{

 for(int i=1;i<=n-1;i++)

 {

 for(int j=1;j<=n-i;j++)

 if(array[j]>=array[j+1])

 array[j]+=array[j+1],

 array[j+1]=array[j]-array[j+1],

 array[j]=array[j]-array[j+1];

 }

}

void searching::binarysearch()

{
 cout<<‖Enter the element to be searched ::‖;

 double x;

 cin>>x;

 int low=1,high=n;

 while(low<=high)

 {

 int middle=(low+high)/2;

 if(x<array[middle])

82

 high=middle-1;

 else if(x>array[middle])

 low=middle+1;

 else

 {

 cout<<‖found \n‖;

 return;

 }

 }

 cout<<‖search unsuccessful\n‖;

}

int main()

{

 searching obj;

 obj.input();

 obj.bubblesort();

 obj.binarysearch();

 return 0;

}

/***

SAMPLE OUTPUT ::

**

This program is to implement binary search algorithm

**

Enter how many numbers you are going to enter::5

Now enter your elements ::

Algorithms and Data Structure 83

1.3

1.2

1.6

1.5
1.4
Enter the element to be searched ::1.4

found

Press any key to continue

**/

□ □ □

84

Chapter-9

Sorting & Searching Techniques

Q.1. Explain the concept of Bubble Sort along with Algorithm.

Ans.: Bubble sort is a simple sorting algorithm. It works by repeatedly stepping
through the list to be sorted, comparing two items at a time and swapping
them if they are in the wrong order. The pass through the list is repeated until
no swaps are needed, which indicates that the list is sorted. The algorithm gets
its name from the way smaller elements "bubble" to the top of the list. Because
it only uses comparisons to operate on elements, it is a comparison sort.

Step-by-Step Example : Let us take the array of numbers "5 1 4 2 8", and sort

the array from lowest number to greatest number using bubble sort algorithm.
In each step, elements written in bold are being compared.

First Pass :

(5 1 4 2 8) (1 5 4 2 8) Here, algorithm compares the first two elements,

and swaps them.

(1 5 4 2 8) (1 4 5 2 8)

(1 4 5 2 8) (1 4 2 5 8)

(1 4 2 5 8) (1 4 2 5 8) Now, since these elements are already in order,

algorithm does not swap them.

Second Pass :

(1 4 2 5 8) (1 4 2 5 8)

(1 4 2 5 8) (1 2 4 5 8)

(1 2 4 5 8) (1 2 4 5 8)

(1 2 4 5 8) (1 2 4 5 8)

Now, the array is already sorted, but our algorithm does not know if it
is completed.

http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Swap
http://en.wikipedia.org/wiki/Comparison_sort

Algorithms and Data Structure 85

Algorithm needs one whole pass without any swap to know it is

sorted.
Third Pass :

(1 2 4 5 8) (1 2 4 5 8)

(1 2 4 5 8) (1 2 4 5 8)

(1 2 4 5 8) (1 2 4 5 8)

(1 2 4 5 8) (1 2 4 5 8)

Finally, the array is sorted, and the algorithm can terminate.

procedure bubbleSort(A : list of sortable items) defined as:

 for each i in 1 to length(A) do:

 for each j in length(A) downto i + 1 do:

 if A[j -1] > A[j] then

 swap(A[j - 1], A[j])

 end if

 end for

 end for

end procedure

Q.2. Explain the concept of Selection Sort along with Algorithm.

Ans.: The algorithm works as follows :

(1) Find the minimum value in the list.

(2) Swap it with the value in the first position.

(3) Repeat the steps above for remainder of the list (starting at the second
position).

Effectively, we divide the list into two parts: the sublist of items already
sorted, which we build up from left to right and is found at the beginning, and
the sublist of items remaining to be sorted, occupying the remainder of the
array.

Here is an example of this sort algorithm sorting five elements :

86

64 25 12 22 11

11 25 12 22 64

11 12 25 22 64

11 12 22 25 64

Selection sort can also be used on list structures that make add and remove
efficient, such as a linked list. In this case it's more common to remove the
minimum element from the remainder of the list, and then insert it at the end
of the values sorted so far. For example :

64 25 12 22 11

11 64 25 12 22

11 12 64 25 22

11 12 22 64 25

11 12 22 25 64

Pseudo-code :

A is the set of elements to sort, n is the number of elements in A (the array

starts at index 0)

for i ← 0 to n-2 do

 min ← i

 for j ← (i + 1) to n-1 do

 if A[j] < A[min]

 min ← j

 swap A[i] and A[min]

Q.3. Explain the Algorithm of Insertion Sort?

Ans.: Insertion sort is a simple sorting algorithm, a comparison sort in which the

sorted array (or list) is built one entry at a time. It is much less efficient on
large lists than more advanced algorithms such as quick sort, heap sort, or
merge sort, but it has various advantages :

http://en.wikipedia.org/wiki/Linked_list

Algorithms and Data Structure 87

(1) Simple to implement.

(2) Efficient on (quite) small data sets.

(3) Efficient on data sets which are already substantially sorted: it runs in
O(n + d) time, where d is the number of inversions.

(4) stable(does not change the relative order of elements with equal keys)

(5) In- place (only requires a constant amount O(1) of extra memory space)

(6) It is an online algorithm , in that it can sort a list as it receives it.

 A simple procedure for Insertion Sort is :

insertionSort(array A)

 for i = 1 to length[A]-1 do

 begin

 value = A[i]

 j = i-1

 while j >= 0 and A[j] > value do

 begin

 A[j + 1] = A[j]

 j = j-1

 end

 A[j+1] = value

 end

Q.4. Explain the Merge Sort?

Ans.: Conceptually, a Merge Sort works as follows :

 If the list is of length 0 or 1, then it is sorted. Otherwise;

 Divide the unsorted list into two sublists of about half the size;

 Sort each sublist recursively by re-applying merge sort;

 Merge the two sublists back into one sorted list.

In a simple pseudocode form, the algorithm could look something like this:

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Merge_algorithm
http://en.wikipedia.org/wiki/Pseudocode

88

function mergesort(m)

 var list left, right, result

 if length(m) ≤ 1

 return m

 var middle = length(m) / 2

 for each x in m up to middle

 add x to left

 for each x in m after middle

 add x to right

 left = mergesort(left)

 right = mergesort(right)

 result = merge(left, right)

 return result

Q.5. Explain the Radix Sort?

Ans.: In computer science, radix sort is a sorting algorithm that sorts integers by

processing individual digits. Because integers can represent strings of
characters (e.g., names or dates) and specially formatted floating point
numbers, radix sort is not limited to integers.

Most digital computers internally represent all of their data as electronic
representations of binary numbers, so processing the digits of integer
representations by groups of binary digit representations is most convenient.
Two classifications of radix sorts are least significant digit (LSD) radix sorts
and most significant digit (MSD) radix sorts. LSD radix sorts process the
integer representations starting from the least significant digit and move
towards the most significant digit. MSD radix sorts work the other way
around.

The integer representations that are processed by sorting algorithms are often
called "keys," which can exist all by themselves or be associated with other
data. LSD radix sorts typically use the following sorting order: short keys
come before longer keys, and keys of the same length are sorted
lexicographically. This coincides with the normal order of integer

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Least_significant_digit
http://en.wikipedia.org/wiki/Most_significant_digit

Algorithms and Data Structure 89

representations, such as the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. MSD radix sorts
use lexicographic order, which is suitable for sorting strings, such as words, or
fixed-length integer representations. A sequence such as "b, c, d, e, f, g, h, i, j,
ba" would be lexicographically sorted as "b, ba, c, d, e, f, g, h, i, j". If
lexicographic ordering is used to sort variable-length integer representations,
then the representations of the numbers from 1 to 10 would be output as 1, 10,
2, 3, 4, 5, 6, 7, 8, 9, as if the shorter keys were left-justified and padded on the
right with blank characters to make the shorter keys as long as the longest key
for the purpose of determining sorted order.

Q.6. Explain the Quick Sorting?

Ans.: Quicksort sorts by employing a divide and conquer strategy to divide a list

into two sub-lists.

The steps are :

 Pick an element, called a pivot, from the list.

 Reorder the list so that all elements which are less than the pivot come
before the pivot and so that all elements greater than the pivot come
after it (equal values can go either way). After this partitioning, the
pivot is in its final position. This is called the partition operation.

 Recursively sort the sub-list of lesser elements and the sub-list of
greater elements.

The base case of the recursion are lists of size zero or one, which are always
sorted.

In simple pseudocode, the algorithm might be expressed as:

 function quicksort(array)

 var list less, greater

 if length(array) ≤ 1

 return array

 select a pivot value pivot from array

 for each x in array

 if x < pivot then append x to less

http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/Pivot_element
http://en.wikipedia.org/wiki/Recursion_%28computer_science%29
http://en.wikipedia.org/wiki/Base_case#Recursive_programming
http://en.wikipedia.org/wiki/Pseudocode

90

 if x > pivot then append x to greater

 return concatenate(quicksort(less), pivot, quicksort(greater))

Q.7. Explain the concept of Binary Search?

Ans.: A binary search algorithm (or binary chop) is a technique for finding a
particular value in a sorted list. It makes progressively better guesses, and
closes in on the sought value by selecting the median element in a list,
comparing its value to the target value, and determining if the selected value
is greater than, less than, or equal to the target value. A guess that turns out to
be too high becomes the new top of the list, and a guess that is too low
becomes the new bottom of the list. Pursuing this strategy iteratively, it
narrows the search by a factor of two each time, and finds the target value.

The algorithm : The most common application of binary search is to find a
specific value in a sorted list. To cast this in the frame of the guessing game
(see Example below), realize that we are now guessing the index, or numbered
place, of the value in the list. This is useful because, given the index, other data
structures will contain associated information. Suppose a data structure
containing the classic collection of name, address, telephone number and so
forth has been accumulated, and an array is prepared containing the names,
numbered from one to N. A query might be: what is the telephone number for
a given name X. To answer this the array would be searched and the index (if
any) corresponding to that name determined, whereupon it would be used to
report the associated telephone number and so forth. Appropriate provision
must be made for the name not being in the list (typically by returning an
index value of zero), indeed the question of interest might be only whether X is
in the list or not.

 low = 0

 high = N

 while (low < high) {

 mid = (low + high)/2;

 if (A[mid] < value)

 low = mid + 1;

http://www.answers.com/topic/collation
http://www.answers.com/topic/median-1
http://www.answers.com/topic/sorting-algorithm

Algorithms and Data Structure 91

 else

 //can't be high = mid-1: here A[mid] >= value,

 //so high can't be < mid if A[mid] == value

 high = mid;

 }

 if (low < N) and (A[low] == value)

 return low

 else

 return not_found

This algorithm has two other advantages. At the end of the loop, low points to
the first entry greater than or equal to value, so a new entry can be inserted if
no match is found. Moreover, it only requires one comparison; which could be
significant for complex keys in languages which do not allow the result of a
comparison to be saved.

Q.8. What is Internal & External Sorting techniques?

Ans.: An internal sort is any data sorting process that takes place entirely within the

main memory of a computer. This is possible whenever the data to be sorted is
small enough to all be held in the main memory. For sorting larger datasets, it
may be necessary to hold only a chunk of data in memory at a time, since it
wont all fit. The rest of the data is normally held on some larger, but slower
medium, like a hard-disk. Any reading or writing of data to and from this
slower media can slow the sortation process considerably. This issue has
implications for different sort algorithms.

Consider a Bubblesort, where adjacent records are swapped in order to get
them into the right order, so that records appear to 'bubble' up and down
through the dataspace. If this has to be done in chunks, then when we have
sorted all the records in chunk 1, we move on to chunk 2, but we find that
some of the records in chunk 1 need to 'bubble through' chunk 2, and vice
versa (i.e., there are records in chunk 2 that belong in chunk 1, and records in
chunk 1 that belong in chunk 2 or later chunks). This will cause the chunks to
be read and written back to disk many times as records cross over the

http://en.wikipedia.org/wiki/Main_memory
http://en.wikipedia.org/wiki/Sort_algorithms
http://en.wikipedia.org/wiki/Bubblesort

92

boundaries between them, resulting in a considerable degradation of
performance. If the data can all be held in memory as one large chunk, then
this performance hit is avoided.

On the other hand, some algorithms handle external sorting rather better. A
Merge sort breaks the data up into chunks, sorts the chunks by some other
algorithm (maybe bubblesort or Quick sort) and then recombines the chunks
two by two so that each recombined chunk is in order. This approach
minimises the number or reads and writes of data-chunks from disk, and is a
popular external sort method.

Q.9. What is the quickest Sorting Method to use?

Ans.: The answer depends on what you mean by quickest. For most sorting

problems, it just doesn‘t matter how quick the sort is because it is done
infrequently or other operations take significantly more time anyway. Even in
cases in which sorting speed is of the essence, there is no one answer. It
depends on not only the size and nature of the data, but also the likely order.
No algorithm is best in all cases.

There are three sorting methods in this author‘s toolbox that are all very fast
and that are useful in different situations. Those methods are quick sort, merge
sort, and radix sort.

The Quick Sort : The quick sort algorithm is of the divide and conquer type.

That means it works by reducing a sorting problem into several easier sorting
problems and solving each of them. A dividing value is chosen from the input
data, and the data is partitioned into three sets: elements that belong before
the dividing value, the value itself, and elements that come after the dividing
value. The partitioning is performed by exchanging elements that are in the
first set but belong in the third with elements that are in the third set but
belong in the first Elements that are equal to the dividing element can be put
in any of the three setsthe algorithm will still work properly.

The Merge Sort : The merge sort is a divide and conquer sort as well. It works

by considering the data to be sorted as a sequence of already-sorted lists (in
the worst case, each list is one element long). Adjacent sorted lists are merged
into larger sorted lists until there is a single sorted list containing all the
elements. The merge sort is good at sorting lists and other data structures that

http://en.wikipedia.org/wiki/External_sorting
http://en.wikipedia.org/wiki/Merge_sort
http://en.wikipedia.org/wiki/Quick_sort

Algorithms and Data Structure 93

are not in arrays, and it can be used to sort things that don‘t fit into memory. It
also can be implemented as a stable sort.

The Radix Sort : The radix sort takes a list of integers and puts each element

on a smaller list, depending on the value of its least significant byte. Then the
small lists are concatenated, and the process is repeated for each more
significant byte until the list is sorted. The radix sort is simpler to implement
on fixed-length data such as ints.

Q.10. What is the quickest Searching Method to use?

Ans.: A binary search, such as bsearch() performs, is much faster than a linear

search. A hashing algorithm can provide even faster searching. One
particularly interesting and fast method for searching is to keep the data in a
digital trie. A digital trie offers the prospect of being able to search for an item
in essentially a constant amount of time, independent of how many items are
in the data set.

A digital trie combines aspects of binary searching, radix searching, and
hashing. The term digital trie refers to the data structure used to hold the
items to be searched. It is a multilevel data structure that branches N ways at
each level.

□ □ □

94

Chapter-10

Graph

Q.1. What is Graph?

Ans.: In computer science, a graph is a kind of data structure, specifically an abstract
data type (ADT), that consists of a set of nodes (also called vertices) and a set
of edges that establish relationships (connections) between the nodes. The
graph ADT follows all connects from the graph theory of mathematics.

Informally, G=(V,E) consists of vertices, the elements of V, which are
connected by edges, the elements of E. Formally, a graph, G, is defined as an
ordered pair, G=(V,E), where V is a set (usually finite) and E is a set consisting
of two element subsets of V.

 Q.2. How can we represent a Graph?

Ans.: Choices of Representation : Two main data structures for the representation

of graphs are used in practice. The first is called an adjacency list, and is
implemented by representing each node as a data structure that contains a list
of all adjacent nodes. The second is an adjacency matrix, in which the rows
and columns of a two-dimensional array represent source and destination
vertices and entries in the array indicate whether an edge exists between the
vertices. Adjacency lists are preferred for sparse graphs; otherwise, an
adjacency matrix is a good choice. Finally, for very large graphs with some
regularity in the placement of edges, a symbolic graph is a possible choice of
representation.

 Q..3 Describe the various list structure of Graphs.

 Ans.: List Structures :

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Sparse_graph
http://en.wikipedia.org/w/index.php?title=Symbolic_graph&action=edit&redlink=1

Algorithms and Data Structure 95

Incidence List : The edges are represented by an array containing pairs

(ordered if directed) of vertices (that the edge connects) and possibly weight
and other data. Vertices connected by an edge are said to be adjacent.

Adjacency List : Much like the incidence list, each vertex has a list of which

vertices it is adjacent to. This causes redundancy in an undirected graph: for
example, if vertices A and B are adjacent, A's adjacency list contains B, while
B's list contains A. Adjacency queries are faster, at the cost of extra storage
space.

Matrix Structures : There are so many matrices by which we can show the

sequential representation of a graph,some of them are (i) Incedence matrix and
(ii) Adjacency matrix :

 (i) Incidence Matrix : Let G be a graph with n vertices, e edges and
no self loops.Define an n x e matrix M = aij, whose n rows
corresponds to the n vertices and these columns correspond to the

edges, as follows :
 The matrix element
 aij = 1 if jth edge ej is incident on ith vertex vi, and

 = 0 otherwise
 (ii) Adjacency Matrix : Adjacency matrix is an alternative approach

to represent the graph by incidence matrix. The adjacency matrix of a

graph G with n vertices and no parrallel edges is an n by n symetric
binary matrix denoted by A = [aij]

 where aij = 1, if there is an edge between ith and jth vertices and
 = 0, if there is no edge between them.

 Q.4. Define Undirected , Directed and Multi Graphs.

Ans.: Undirected Graph : An undirected graph G has two kinds of incidence matrix:

unoriented and oriented. The incidence matrix (or unoriented incidence

matrix) of G is a p × q matrix (bij), where p and q are the numbers of vertices

and edges respectively, such that bij = 1 if the vertex vi and edge xj are

incident and 0 otherwise.

Multigraph : A multigraph with multiple edges (red) and a loop (blue). Not

all authors allow multigraphs to have loops.

http://en.wikipedia.org/wiki/Incidence_list
http://en.wikipedia.org/wiki/Array
http://en.wikipedia.org/wiki/Adjacency_list
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Matrix_%28math%29
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29

96

A multigraph or pseudograph is a graph which is permitted to have multiple
edges, (also called "parallel edges"), that is, edges that have the same end
nodes. Thus two vertices may be connected by more than one edge. Formally,
a multigraph G is an ordered pair G:=(V, E) with

 V a set of vertices or nodes,

 E a multiset of unordered pairs of vertices, called edges or lines.

Multigraphs might be used to model the possible flight connections offered by
an airline. In this case the pseudograph would be a directed graph with pairs
of directed parallel edges connecting cities to show that it is possible to fly
both to and from these locations.

Some authors also allow multigraphs to have loops, that is, an edge that
connects a vertex to itself.

A multidigraph is a directed graph which is permitted to have multiple arcs,
i.e., arcs with the same source and target nodes. A multidigraph G is an
ordered pair G:=(V,A) with

 V a set of vertices or nodes,

 A a multiset of ordered pairs of vertices called directed edges, arcs or
arrows.

A mixed multigraph G:=(V,E, A) may be defined in the same way as a mixed
graph.

Q.5. How will you Explain Matrix Structures of Graph?

Ans.: Incidence Matrix : The graph is represented by a matrix of size |V| (number
of vertices) by |E| (number of edges) where the entry [vertex, edge] contains
the edge's endpoint data (simplest case: 1 - connected, 0 - not connected).

The incidence matrix of a directed graph D is a p × q matrix [bij] where p and

q are the number of vertices and edges respectively, such that bij = − 1 if the

edge xj leaves vertex vi, 1 if it enters vertex vi and 0 otherwise. (Note that

many authors use the opposite sign convention.)

An oriented incidence matrix of an undirected graph G is the incidence matrix,

in the sense of directed graphs, of any orientation of G. That is, in the column

of edge e, there is a +1 in the row corresponding to one vertex of e and a -1 in

http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Multiple_edges
http://en.wikipedia.org/wiki/Multiple_edges
http://en.wikipedia.org/wiki/Multiple_edges
http://en.wikipedia.org/wiki/Ordered_pair
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Multiset
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Loop_%28graph_theory%29
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Mixed_graph
http://en.wikipedia.org/wiki/Mixed_graph
http://en.wikipedia.org/wiki/Mixed_graph
http://en.wikipedia.org/wiki/Incidence_matrix
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Directed_graph

Algorithms and Data Structure 97

the row corresponding to the other vertex of e, and all other rows have 0. All

oriented incidence matrices of G differ only by negating some set of columns.

In many uses, this is an insignificant difference, so one can speak of the

oriented incidence matrix, even though that is technically incorrect.

The oriented or unoriented incidence matrix of a graph G is related to the
adjacency matrix of its line graph L(G) by the following theorem:

A(L(G)) = B(G)TB(G) − 2Iq

where A(L(G)) is the adjacency matrix of the line graph of G, B(G) is the
incidence matrix, and Iq is the identity matrix of dimension q.

Adjacency Matrix : This is the n by n matrix A, where n is the number of

vertices in the graph. If there is an edge from some vertex x to some vertex y,
then the element ax,y is 1 (or in general the number of xy edges), otherwise it
is 0. In computing, this matrix makes it easy to find subgraphs, and to reverse
a directed graph.

 Q.6. How do we compare Graph with other Data Structures?

Ans.: Graph data structures are non-hierarchical and therefore suitable for data sets

where the individual elements are interconnected in complex ways. For
example, a computer network can be modeled with a graph.

Hierarchical data sets can be represented by a binary or nonbinary tree. It is

worth mentioning, however, that trees can be seen as a special form of graph.

 Operations : Graph algorithms are a significant field of interest within

computer science. Typical operations associated with graphs are: finding a

path between two nodes, like depth-first search and breadth-
first search and finding the shortest path from one node to another, like

Dijkstra's algorithm. A solution to finding the shortest path from

each node to every other node also exists in the form of the Floyd-
Warshall algorithm.

http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Line_graph
http://en.wikipedia.org/wiki/Identity_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

98

A directed graph can be seen as a flow network, where each edge has a
capacity and each edge receives a flow. The Ford-Fulkerson algorithm is used
to find out the maximum flow from a source to a sink in a graph.

The graphs can be represented in two ways. One is adjacency matrix and
adjacency list.

For example, let us consider the following graph

 A----------->B

 | ̂

 | |

 | |

 V |

 C ------------

Adjacency Matrix :

 A B C

 A 0 1 1

 B 0 0 0

 C 0 1 0

Adjacency List :

 A ----> | B | ----> | C | ---- NULL

 B ----> ---- NULL

 C ----> | B | ---- NULL

Q.7. Explain Depth-First Search.

Ans.: Depth-First Search (DFS) is an algorithm for traversing or searching a tree, tree

structure, or graph. One starts at the root (selecting some node as the root in
the graph case) and explores as far as possible along each branch before
backtracking.

http://en.wikipedia.org/wiki/Flow_network
http://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm
http://en.wikipedia.org/wiki/Maximum_flow_problem
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Graph_%28data_structure%29
http://en.wikipedia.org/wiki/Backtracking

Algorithms and Data Structure 99

The depth first search is well geared towards problems where we want to find

any solution to the problem (not necessarily the shortest path), or to visit all of

the nodes in the graph

This concept maps extremely well to a Depth First search. The basic concept is

to visit a node, then push all of the nodes to be visited onto the stack. To find

the next node to visit we simply pop a node of the stack, and then push all the

nodes connected to that one onto the stack as well and we continue doing this

until all nodes are visited. It is a key property of the Depth First search that we

not visit the same node more than once, otherwise it is quite possible that we

will recurs infinitely. We do this by marking the node as we visit it, then

unmarking it after we have finished our recursions. This action allows us to

visit all the paths that exist in a graph; however for large graphs this is mostly

infeasible so we sometimes omit the marking the node as not visited step to

just find one valid path through the graph (which is good enough most of the

time).

Q.8. Explain Breadth-First Search.

Ans.: In graph theory, breadth-first search (BFS) is a graph search algorithm that

begins at the root node and explores all the neighboring nodes. Then for each
of those nearest nodes, it explores their unexplored neighbour nodes, and so
on, until it finds the goal.

 How it works : BFS is a uninformed search method that aims

to expand and examine all nodes of a graph systematically in search of a

solution. In other words, it exhaustively searches the entire graph without

considering the goal until it finds it. It does not use a heuristic.

From the standpoint of the algorithm, all child nodes obtained by expanding a
node are added to a FIFO queue. In typical implementations, nodes that have
not yet been examined for their neighbors are placed in some container (such
as a queue or linked list) called "open" and then once examined are placed in
the container "closed".

http://www.answers.com/topic/graph-theory
http://www.answers.com/topic/bfs
http://www.answers.com/topic/graph-traversal
http://www.answers.com/topic/node-computer-science
http://www.answers.com/topic/search-algorithm
http://www.answers.com/topic/graph-data-structure
http://www.answers.com/topic/heuristic
http://www.answers.com/topic/algorithm
http://www.answers.com/topic/fifo
http://www.answers.com/topic/queue-data-structure
http://www.answers.com/topic/linked-list

100

 An example map of Germany with some connections between cities.

 The breadth-first tree one gets when running BFS on the given map and

starting in Frankfurt.

http://www.answers.com/topic/germany
http://www.answers.com/topic/frankfurt

Algorithms and Data Structure 101

 Animated example of a breadth-first search

 Algorithm (Informal) :

(1) Put the ending node (the root node) in the queue.

(2) Pull a node from the beginning of the queue and examine it.

o If the searched element is found in this node, quit the search and
return a result.

o Otherwise push all the (so-far-unexamined) successors (the
direct child nodes) of this node into the end of the queue, if there
are any.

(3) If the queue is empty, every node on the graph has been examined --
quit the search and return "not found".

(4) Repeat from Step 2.

C Implementation :

Algorithm of Breadth-First Search :

void BFS(VLink G[], int v) {

 int w;

 VISIT(v); /*visit vertex v*/

 visited[v] = 1; /*mark v as visited : 1 */

 ADDQ(Q,v);

 while(!QMPTYQ(Q)) {

 v = DELQ(Q); /*Dequeue v*/

102

 w = FIRSTADJ(G,v); /*Find first neighbor, return -1 if no neighbor*/

 while(w != -1) {

 if(visited[w] == 0) {

 VISIT(w); /*visit vertex v*/

 ADDQ(Q,w); /*Enqueue current visited vertext w*/

 visited[w] = 1; /*mark w as visited*/

 }

 W = NEXTADJ(G,v); /*Find next neighbor, return -1 if no neighbor*/

 }

 }

}

Main Algorithm of apply Breadth-first search to graph G=(V,E)ï¼š

void TRAVEL_BFS(VLink G[], int visited[], int n) {

 int i;

 for(i = 0; i < n; i ++) {

 visited[i] = 0; /* Mark initial value as 0 */

 }

 for(i = 0; i < n; i ++)

 if(visited[i] == 0)

 BFS(G,i);

}

C++ implementation

This is the implementation of the above informal algorithm, where the "so-far-
unexamined" is handled by the parent array.

Suppose we have a struct:

struct Vertex {

 ...

 std::vector<int> out;

 ...

};

Algorithms and Data Structure 103

and an array of vertices: (the algorithm will use the indexes of this
array, to handle the vertices)

std::vector<Vertex> graph(vertices);

the algorithm starts from start and returns true if there is a directed
path from start to end:

bool BFS(const std::vector<Vertex>& graph, int start, int end) {

 std::queue<int> next;

 std::map<int,int> parent;

 parent[start] = -1;

 next.push(start);

 while (!next.empty()) {

 int u = next.front();

 next.pop();

 // Here is the point where you can examine the u th vertex of graph

 // For example:

 if (u == end) return true;

 for (std::vector<int>::const_iterator j = graph[u].out.begin(); j !=
graph[u].out.end(); ++j) {

 // Look through neighbors.

 int v = *j;

 if (parent.count(v) == 0) {

 // If v is unvisited.

 parent[v] = u;

 next.push(v);

 }

 }

 }

 return false;

}

It also stores the parents of each node, from which you can get the path.

□ □ □

104

Chapter-11

Tree

Q.1. What is Tree?

Ans.: A tree is a non-empty collection of vertices & edges that satisfies certain
requirements. A vertex is a simple object (node) that can have a name and
carry other associated information. An edge is a connection between two
vertices.

A Tree is a finite set of a zero or more vertices such that there is one specially
designated vertex called Root and the remaining vertices are partitioned into a
collection of sub-trees, each of which is also a tree. A node may not have
children, such node is known as Leaf (terminal node). The line from parent to
a child is called a branch or an edge. Children to same parent are called
siblings.

 Q.2. What is Binary Tree?

 Ans.: In computer science, a binary

tree is a tree data structure in which

each node has at most two children.

Typically the child nodes are called left and
right. One common use of binary trees is

binary search trees; another is

binary heaps.

A simple binary tree of size 9 and height 4, with a root node whose value is 2

 In other words, A binary tree consists of

 a node (called the root node) and

http://www.answers.com/topic/computer-science
http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/data-structure
http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/binary-search-tree
http://www.answers.com/topic/binary-heap

Algorithms and Data Structure 105

 left and right sub-trees.

Both the sub-trees are themselves binary trees.

The nodes at the lowest levels of the tree (the ones with no sub-trees) are
called leaves.

In an ordered binary tree,

(a) the keys of all the nodes in the left sub-tree are less than that of the root,

(b) the keys of all the nodes in the right sub-tree are greater than that of the
root,

(c) the left and right sub-trees are themselves ordered binary trees.

 Q.3. Explain the different definitions for Rooted Tree.

 Ans.: Definitions for Rooted Trees :

 A directed edge refers to the link from the parent to the child (the
arrows in the picture of the tree).

 The root node of a tree is the node with no parents. There is at most one

root node in a rooted tree.

 A leaf is a node that has no children.

 The depth of a node n is the length of the path from the root to the

node. The set of all nodes at a given depth is sometimes called a level of
the tree. The root node is at depth zero.

 The height of a tree is the length of the path from the root node to its

furthest leaf. A tree with only a root node has a height of zero.

 Siblings are nodes that share the same parent node.

 If a path exists from node p to node q, where node p is closer to the root

node than q, then p is an ancestor of q and q is a descendant of p.

 The size of a node is the number of descendants it has including itself.

 Q.4. Explain about the different types of Binary Tree.

 Ans.: Types of Binary Trees :

http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/node-computer-science
http://www.answers.com/topic/leaf-node

106

 A rooted binary tree is a rooted tree in which every node has at most

two children.

 A full binary tree, or proper binary tree, is a tree in which every node

has zero or two children.

 A perfect binary tree (sometimes complete binary tree) is a full binary

tree in which all leaves are at the same depth.

 A complete binary tree may also be defined as a full binary tree in

which all leaves are at depth n or n-1 for some n. In order for a tree to
be the latter kind of complete binary tree, all the children on the last
level must occupy the leftmost spots consecutively, with no spot left
unoccupied in between any two. For example, if two nodes on the
bottommost level each occupy a spot with an empty spot between the
two of them, but the rest of the children nodes are tightly wedged
together with no spots in between, then the tree cannot be a complete
binary tree due to the empty spot.

 A rooted complete binary tree can be identified with a free magma.

 An almost complete binary tree is a tree in which each node that has a

right child also has a left child. Having a left child does not require a
node to have a right child. Stated alternately, an almost complete binary
tree is a tree where for a right child, there is always a left child, but for a
left child there may not be a right child.

 The number of nodes n in a complete binary tree can be found using
this formula: n = 2h + 1 - 1 where h is the height of the tree.

 The number of leaf nodes n in a complete binary tree can be found
using this formula: n = 2h where h is the height of the tree.

 Q.5. What do you mean by Binary Search Tree?

Ans.: In computer science, a binary search tree (BST) is a binary tree data structure

which has the following properties :

 each node has a value;

 a total order is defined on these values;

http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/magma-algebra-1
http://www.bookrags.com/Computer_science
http://www.bookrags.com/Binary_tree
http://www.bookrags.com/Data_structure
http://www.bookrags.com/Total_order

Algorithms and Data Structure 107

 the left subtree of a node contains only values less than the node's
value;

 the right subtree of a node contains only values greater than or equal to
the node's value.

The major advantage of binary search trees is that the related sorting
algorithms and search algorithms such as in-order traversal can be very
efficient. Binary search trees are a fundamental data structure used to
construct more abstract data structures such as sets, multisets, and associative
arrays. If a BST allows duplicate values, then it represents a multiset. This kind
of tree uses non-strict inequalities. Everything in the left subtree of a node is
strictly less than the value of the node, but everything in the right subtree is
either greater than or equal to the value of the node. If a BST doesn't allow
duplicate values, then the tree represents a set with unique values, like the
mathematical set. Trees without duplicate values use strict inequalities,
meaning that the left subtree of a node only contains nodes with values that
are less than the value of the node, and the right subtree only contains values
that are greater. The choice of storing equal values in the right subtree only is
arbitrary; the left would work just as well. One can also permit non-strict
equality in both sides. This allows a tree containing many duplicate values to
be balanced better, but it makes searching more complex.

 Q.6. What are the different Operations of Tree Structure?

Ans.: Operations : All operations on a binary tree make several calls to a

comparator, which is a subroutine that computes the total order on any two
values. In generic implementations of binary search trees, a program often
provides a callback to a comparator when it creates a tree, either explicitly or,
in languages that support type polymorphism, by having values be of a
comparable type.

 Searching : Searching a binary tree for a specific value is a process that

can be performed recursively because of the order in which values are stored. We
begin by examining the root. If the value we are searching for equals the root, the
value exists in the tree. If it is less than the root, then it must be in the left subtree, so
we recursively search the left subtree in the same manner. Similarly, if it i s greater
than the root, then it must be in the right subtree, so we recursively search the right
subtree. If we reach a leaf and have not found the value, then the item is not where it

http://www.bookrags.com/Sorting_algorithm
http://www.bookrags.com/Sorting_algorithm
http://www.bookrags.com/Sorting_algorithm
http://www.bookrags.com/Search_algorithm
http://www.bookrags.com/In-order_traversal
http://www.bookrags.com/Data_structure
http://www.bookrags.com/Set_%28computer_science%29
http://www.bookrags.com/Multiset
http://www.bookrags.com/Associative_array
http://www.bookrags.com/Associative_array
http://www.bookrags.com/Associative_array
http://www.bookrags.com/wiki/Binary_search_tree
http://www.bookrags.com/Comparator
http://www.bookrags.com/Subroutine
http://www.bookrags.com/Callback
http://www.bookrags.com/Type_polymorphism

108

would be if it were present, so it does not lie in the tree at all. A comparison may be
made with binary search, which operates in nearly the same way but using random
access on an array instead of following links. Here is the search algorithm in the
Python programming language: <source lang="python">

def search_binary_tree(node, key):

 if node is None:

 return None # key not found

 if key < node.key:

 return search_binary_tree(node.left, key)

 else if key > node.key:

 return search_binary_tree(node.right, key)

 else: # key is equal to node key

 return node.value # found key

</source> This operation requires O(log n) time in the average case,
but needs O(n) time in the worst-case, when the unbalanced tree
resembles a linked list (degenerate tree).

 Insertion : Insertion begins as a search would begin; if the root is not

equal to the value, we search the left or right subtrees as before. Eventually, we will

reach an external node and add the value as its right or left child, depending on the

node's value. In other words, we examine the root and recursively insert the new

node to the left subtree if the new value is less than the root, or the right subtree if the

new value is greater than or equal to the root. Here's how a typical binary search tree

insertion might be performed in C++: <source lang="cpp">

/* Inserts the node pointed to by "newNode" into the subtree rooted at
"treeNode" */

void InsertNode(struct node *&treeNode, struct node *newNode)

{

 if (treeNode == NULL)

 treeNode = newNode;

http://www.bookrags.com/Binary_search
http://www.bookrags.com/Python_%28programming_language%29
http://www.bookrags.com/Big_O_notation
http://www.bookrags.com/Big_O_notation
http://www.bookrags.com/C%2B%2B_%28programming_language%29

Algorithms and Data Structure 109

 else if (newNode->value < treeNode->value)

 InsertNode(treeNode->left, newNode);

 else

 InsertNode(treeNode->right, newNode);

}

</source> The above "destructive" procedural variant modifies the tree
in place. It uses only constant space, but the previous version of the tree
is lost. Alternatively, as in the following Python example, we can
reconstruct all ancestors of the inserted node; any reference to the
original tree root remains valid, making the tree a persistent data
structure: <source lang="python">

def binary_tree_insert(node, key, value):

 if node is None:

 return TreeNode(None, key, value, None)

 if key == node.key:

 return TreeNode(node.left, key, value, node.right)

 if key < node.key:

return TreeNode(binary_tree_insert(node.left, key, value),
node.key,

 node.value, node.right)

 else:

return TreeNode(node.left, node.key, node.value,

 binary_tree_insert(node.right, key, value))

</source> The part that is rebuilt uses Θ(log n) space in the average
case and Ω(n) in the worst case (see big-O notation). In either version,
this operation requires time proportional to the height of the tree in the
worst case, which is O(log n) time in the average case over all trees, but
Ω(n) time in the worst case. Another way to explain insertion is that in
order to insert a new node in the tree, its value is first compared with
the value of the root. If its value is less than the root's, it is then

http://www.bookrags.com/Python_%28programming_language%29
http://www.bookrags.com/Persistent_data_structure
http://www.bookrags.com/Persistent_data_structure
http://www.bookrags.com/Persistent_data_structure
http://www.bookrags.com/Big-O_notation
http://www.bookrags.com/Big_O_notation

110

compared with the value of the root's left child. If its value is greater, it
is compared with the root's right child. This process continues, until the
new node is compared with a leaf node, and then it is added as this
node's right or left child, depending on its value. There are other ways
of inserting nodes into a binary tree, but this is the only way of
inserting nodes at the leaves and at the same time preserving the BST
structure.

 Deletion : There are several cases to be considered:

 Deleting a leaf: Deleting a node with no children is easy, as we
can simply remove it from the tree.

 Deleting a node with one child: Delete it and replace it with its
child.

 Deleting a node with two children: Suppose the node to be
deleted is called N. We replace the value of N with either its in-
order successor (the left-most child of the right subtree) or the in-
order predecessor (the right-most child of the left subtree).

Once we find either the in-order successor or predecessor, swap it with
N, and then delete it. Since both the successor and the predecessor must
have fewer than two children, either one can be deleted using the
previous two cases. In a good implementation, it is generally
recommended to avoid consistently using one of these nodes, because
this can unbalance the tree. Here is C++ sample code for a destructive
version of deletion. (We assume the node to be deleted has already been
located using search.) <source lang="cpp">

void DeleteNode(struct node * & node) {

http://www.bookrags.com/Balanced_tree
http://www.bookrags.com/C%2B%2B

Algorithms and Data Structure 111

 if (node->left == NULL) {

 struct node *temp = node;

 node = node->right;

 delete temp;

 } else if (node->right == NULL) {

 struct node *temp = node;

 node = node->left;

 delete temp;

 } else {

 // In-order predecessor (rightmost child of left subtree)

 // Node has two children - get max of left subtree

 struct node **temp = &node->left; // get left node of the original
node

 // find the rightmost child of the subtree of the left node

 while ((*temp)->right != NULL) {

 temp = &(*temp)->right;

 }

 // copy the value from the in-order predecessor to the original
node

 node->value = (*temp)->value;

 // then delete the predecessor

 DeleteNode(*temp);

 }

}

112

</source> Although this operation does not always traverse the tree
down to a leaf, this is always a possibility; thus in the worst case it
requires time proportional to the height of the tree. It does not require
more even when the node has two children, since it still follows a single
path and does not visit any node twice.

 Sort

A binary search tree can be used to implement a simple but inefficient
sorting algorithm. Similar to heapsort, we insert all the values we wish
to sort into a new ordered data structure — in this case a binary search
tree — and then traverse it in order, building our result: <source
lang="python">

def build_binary_tree(values):

 tree = None

 for v in values:

 tree = binary_tree_insert(tree, v)

 return tree

def traverse_binary_tree(treenode):

 if treenode is None: return []

 else:

 left, value, right = treenode

 return (traverse_binary_tree(left), [value],
traverse_binary_tree(right))

</source> The worst-case time of build_binary_tree is
$\Theta(n^2)$ — if you feed it a sorted list of values, it
chains them into a linked list with no left subtrees. For example,
build_binary_tree([1, 2, 3, 4, 5]) yields the tree (None, 1, (None, 2,
(None, 3, (None, 4, (None, 5, None))))). There are several schemes for
overcoming this flaw with simple binary trees; the most common is the
self-balancing binary search tree. If this same procedure is done using
such a tree, the overall worst-case time is O(nlog n), which is
asymptotically optimal for a comparison sort. In practice, the poor
cache performance and added overhead in time and space for a tree-

http://www.bookrags.com/Sorting_algorithm
http://www.bookrags.com/Heapsort
http://www.bookrags.com/wiki/Binary_search_tree
http://www.bookrags.com/Linked_list
http://www.bookrags.com/Self-balancing_binary_search_tree
http://www.bookrags.com/Big_O_notation
http://www.bookrags.com/Asymptotically_optimal
http://www.bookrags.com/Comparison_sort
http://www.bookrags.com/CPU_cache

Algorithms and Data Structure 113

based sort (particularly for node allocation) make it inferior to other
asymptotically optimal sorts such as quicksort and heapsort for static
list sorting. On the other hand, it is one of the most efficient methods of
incremental sorting, adding items to a list over time while keeping the
list sorted at all times.

 Q.7. What do you mean by Tree Traversal?

Ans.: Traversal : Once the binary search tree has been created, its elements can be

retrieved in order by recursively traversing the left subtree of the root node,
accessing the node itself, then recursively traversing the right subtree of the
node, continuing this pattern with each node in the tree as it's recursively
accessed. The tree may also be traversed in pre-order or post-order traversals.
<source lang="python">

def traverse_binary_tree(treenode):

 if treenode is None: return

 left, nodevalue, right = treenode

 traverse_binary_tree(left)

 visit(nodevalue)

 traverse_binary_tree(right)

</source> Traversal requires Ω(n) time, since it must visit every node. This
algorithm is also O(n), and so it is asymptotically
optimal.

Traversing A Binary Tree : Traversing a binary

tree comes in handy when you would like to do a
print out of all the data elements in the tree. We
demonstrate three types of traversals in our
tutorial.

All traversal descriptions refer to :

These three types are as follows :

 Pre Order Traversal : A pre order

traversal prints the contents of a sorted tree, in
pre order. In other words, the contents of the

Figure : Sorted Binary
Tree

http://www.bookrags.com/Dynamic_memory_allocation
http://www.bookrags.com/Quicksort
http://www.bookrags.com/Heapsort
http://www.bookrags.com/In-order_traversal
http://www.bookrags.com/Pre-order_traversal
http://www.bookrags.com/Post-order_traversal
http://www.bookrags.com/Asymptotically_optimal
http://www.bookrags.com/Asymptotically_optimal
http://www.bookrags.com/Asymptotically_optimal

114

root node are printed first, followed by left subtree and finally the right subtree. So in
Figure , an in order traversal would result in the following string: FCADJHIK

PreOrder (T)

 If T < > Null

 then print (T.data)

 else print(‗empty tree‘)

 If T.lp < > null

 then PreOrder(T.lp)

 If T.rp < > null

 then preorder (T.rp)

 end.

 In Order Traversal : An in order traversal prints the contents of a

sorted tree, in order. In other words, the lowest in value first, and then increasing in
value as it traverses the tree. The order of a traversal would be 'a' to 'z' if the tree uses
strings or characters, and would be increasing numerically from 0 if the tree contains
numerical values. So in Figure , an in order traversal would result in the following
string: ACDFHIJK

InOrder (T)

 If T < > null

 print (‗empty tree‘)

 If T.lp < > null

 then InOrder(T.lp)

 print (T.data)

 If T.rp < > null

 then InOrder (T.lp)

 end.

 Post Order Traversal : A post order traversal prints the contents of a

sorted tree, in post order. In other words, the contents of the left subtree are printed

Algorithms and Data Structure 115

first, followed by right subtree and finally the root node. So in Figure , an in order

traversal would result in the following string: ADCIHKJF.

PostOrder (T)

 If T = null

 then print (‗empty tree‘)

 If T.lp < > null

 then PostOrder(T.lp)

 If T.rp < > null

 then PostOrder(T.lp)

 Print(T.data)

 end.

 Q.8. What is a Heap?

Ans.: Definition : A minimal heap (descending heap) is an almost complete binary

tree in which the value at each parent node is less than or equal to the values
in its child nodes.

Obviously, the minimum value is in the root node. Note, too, that any path
from a leaf to the root passes through the data in descending order.

Here is an example of a minimal heap :

 C

 / \

 H K

 / \ /

 L I M

Storage of Heap Data : The typical storage method for a heap, or any almost

complete binary tree, works as follows. Begin by numbering the nodes level by
level from the top down, left to right. For example, consider the following heap.
The numbering has been added below the nodes.

116

 C

 0

 / \

 H K

 1 2

 / \ /

 L I M

 3 4 5

Then store the data in an array as shown below :

The advantage of this method over using the usual pointers and nodes is that
there is no wasting of space due to storing two pointer fields in each node.
Instead, starting with the current index, CI, one calculates the index to use as
follows :

Parent(CI) = (CI - 1) / 2

RightChild(CI) = 2 * (CI + 1)

LeftChild(CI) = 2 * CI + 1

For example, if we start at node H (with index 1), the right child is at index 2 *
(1 + 1) = 4, that is, node I.

Inserting into a Heap : This is done by temporarily placing the new item at

the end of the heap (array) and then calling a FilterUp routine to make any

needed adjustments on the path from this leaf to the root. For example, let's

insert E into the following heap :

 C

 / \

 H K

 / \ /

Algorithms and Data Structure 117

 L I M

First, temporarily place E in the next available position :

 C

 / \

 H K

 / \ / \

 L I M E

Of course, the new tree might not be a heap. The FilterUp routine now checks

the parent, K, and sees that things would be out of order as they are. So K is

moved down to where E was. Then the parent above that, C, is checked. It is in

order relative to the target item E, so the C is not moved down. The hole left

behind is filled with E, then, as this is the correct position for it.

 C

 / \

 H E

 / \ / \

 L I M K

For practice, let's take the above heap and insert another item, D. First, place D
temporarily in the next available position :

 C

 / \

 H E

 / \ / \

 L I M K

 /

 D

Then the FilterUp routine checks the parent, L, and discovers that L must be

moved down. Then the parent above that, H, is checked. It too must be moved

118

down. Finally C is checked, but it is OK where it is. The hole left where the H

had been is where the target D is then inserted.

 C

 / \

 D E

 / \ / \

 H I M K

 /

 L

Things have now been adjusted so that we again have a heap!

Removing from a Heap : We always remove the item from the root. That way

we always get the smallest item. The problem is then how to adjust the binary

tree so that we again have a heap (with one less item).

The algorithm works like this: First, remove the root item and replace it

temporarily with the item in the last position. Call this replacement the target.

A FilterDown routine is then used to check the path from the root to a leaf for

the correct position for this target. The path is chosen by always selecting the

smaller child at each node. For example, let's remove the C from this heap :

 C

 / \

 D E

 / \ / \

 H I M K

 /

 L
First we remove the C and replace it with the last item (the target), L :

 L

 / \

 D E

 / \ / \

Algorithms and Data Structure 119

 H I M K
The smaller child of L is D. Since D is out of order compared to the target L,
we move D up. The smaller child under where D had been is H. When H is
compared to L we see that the H too needs to be moved up. Since we are now
at a leaf, this empty leaf is where the target L is put.

 D

 / \

 H E

 / \ / \

 L I M K
For another example, let's remove the E from the following heap :

 E

 / \

 G K

 / \ / \

 J N K X

 / \ /

 X Y P

First remove the E and replace it with the target P (the last item) :

 P

 / \

 G K

 / \ / \

 J N K X

 / \

 X Y

Now use the FilterDown routine to filter the P down to its correct position by
checking the smaller child, G, which should be moved up, and then the
smaller child below that, J, which should also be moved up. Finally, the
smaller child, X, under where J had been is checked, but it does not get moved
since it is OK relative to the target P. The P is then placed in the empty node
above X. We then have the following heap:

120

 G

 / \

 J K

 / \ / \

 P N K X

 / \

 X Y

 Q.9. Explain Heapsort in terms of tree structure.

Ans.: Heapsort is performed by somehow creating a heap and then removing the
data items one at a time. The heap could start as an empty heap, with items
inserted one by one. However, there is a relatively easy routine to convert an
array of items into a heap, so that method is often used. This routine is
described below. Once the array is converted into a heap, we remove the root
item (the smallest), readjust the remaining items into a heap, and place the
removed item at the end of the heap (array). Then we remove the new item in
the root (the second smallest), readjust the heap, and place the removed item
in the next to the last position, etc.

Heapsort is Theta(n * lg(n)), either average case or worst case. This is great for
a sorting algorithm! No appreciable extra storage space is needed either. On
average, quicksort (which is also Theta(n * lg(n)) for the average case) is faster
than heapsort. However, quicksort has that bad Theta(n^2) worst case running
time.

Example Trace of Heapsort : Let's heapsort the following array :

To convert this to a heap, first go to the index of the last parent node. This is
given by (HeapSize - 2) / 2. In this case, (9 - 2) / 2 = 3. Thus K is the last parent
in the tree. We then apply the FilterDown routine to each node from this index
down to index 0. (Note that this is each node from 3 down to 0, not just the
nodes along the path from index 3 to index 0.)

Algorithms and Data Structure 121

In our example, the array corresponds directly to the following binary tree.
Note that this is not yet a heap.

 P

 / \

 S C

 / \ / \

 K M L A

 / \

 X E

Applying FilterDown at K gives the following. (Note that E is the smaller child
under K.)

 P

 / \

 S C

 / \ / \

 E M L A

 / \

 X K

Now apply FilterDown at index 2, that is, at node C. (Under C, A is the smaller
child.)

 P

 / \

 S A

 / \ / \

 E M L C

 / \

 X K

Next, apply FilterDown at index 1, that is, at node S. Check the smaller child,
E, and then the smaller child under that, namely K. Both E and K get moved
up.

 P

122

 / \

 E A

 / \ / \

 K M L C

 / \

 X S

Finally, apply FilterDown at index 0, that is, at the root node. We check the
smaller child, A, and then the smaller child, C, relative to the target P. Both A
and C get moved up.

 A

 / \

 E C

 / \ / \

 K M L P

 / \

 X S

Now we have a heap! The first main step of heapsort has been completed. The
other main component of heapsort was described earlier: to repeatedly remove
the root item, adjust the heap, and put the removed item in the empty slot
toward the end of the array (heap).

First we remove the A, adjust the heap by using FilterDown at the root node,
and place the A at the end of the heap (where it is not really part of the heap at
all and so is not drawn below as connected to the tree).

 C (the target is S)

 / \

 E L

 / \ / \

 K M S P

 / .

Algorithms and Data Structure 123

 X A

Of course, all of this is really taking place in the array that holds the heap. At
this point it looks like the following. Note that the heap is stored from index 0
to index 7. The A is after the end of the heap.

Next we remove the C, adjust the heap by using FilterDown at the root node,
and place the C at the end of the heap:

 E (the target is X)

 / \

 K L

 / \ / \

 X M S P

 . .

 C A

Next we remove the E, adjust the heap by using FilterDown at the root node,
and place the E at the end of the heap :

 K (the target is P)

 / \

 M L

 / \ / .

 X P S E

 . .

 C A

Next we remove the K, adjust the heap by using FilterDown at the root node,
and place the K at the end of the heap :

 L (the target is S)

124

 / \

 M S

 / \ . .

 X P K E

 . .

 C A

Next we remove the L, adjust the heap by using FilterDown at the root node,
and place the L at the end of the heap :

 M (the target is P)

 / \

 P S

 / . . .

 X L K E

 . .

 C A

Next we remove the M, adjust the heap by using FilterDown at the root node,
and place the M at the end of the heap :

 P (the target is X)

 / \

 X S

 M L K E

 . .

 C A

Next we remove the P, adjust the heap by using FilterDown at the root node,
and place the P at the end of the heap :

 S (the target is S)

 / .

Algorithms and Data Structure 125

 X P

 M L K E

 . .

 C A

Next we remove the S, adjust the heap (now a trivial operation), and place the
S at the end of the heap :

 X (the target is X)

 . .

 S P

 M L K E

 . .

 C A

Since only the item X remains in the heap, and since we have removed the
smallest item, then the second smallest, etc., the X must be the largest item and
should be left where it is. If you now look at the array that holds the above
items you will see that we have sorted the array in descending order:

 Q.10. Define Hash Tables.

Ans.: In computer science, a hash table, or a hash map, is a data structure that

associates keys with values. The primary operation it supports efficiently is a
lookup: given a key (e.g. a person's name), find the corresponding value (e.g.
that person's telephone number). It works by transforming the key using a
hash function into a hash, a number that is used as an index in an array to
locate the desired location ("bucket") where the values should be.

Hash tables support the efficient insertion of new entries, in expected O(1)
time. The time spent in searching depends on the hash function and the load

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Big_O_notation

126

of the hash table; both insertion and search approach O(1) time with well
chosen values and hashes.

Hashing means the act of taking some value and producing a number from the
value. A hash function is a function that does this. Every equivalence predicate
e has a set of acceptable hash functions for that predicate; a hash funtion hash
is acceptable iff (e obj1 obj2) → (= (hash obj1) (hash obj2)).

A hash function h is good for a equivalence predicate e if it distributes the
result numbers (hash values) for non-equal objects (by e) as uniformly as
possible over the numeric range of hash values, especially in the case when
some (non-equal) objects resemble each other by e.g. having common
subsequences. This definition is vague but should be enough to assert that e.g.
a constant function is not a good hash function.

Basic Operation : A hash table works by transforming the key using a hash

function into a hash, a number that is used as an index in an array to locate the
desired location ("bucket") where the values should be. The number is
normally converted into the index by taking a modulo, or sometimes bit
masking is used where the array size is a power of two. The optimal hash
function for any given use of a hash table can vary widely, however,
depending on the nature of the key.

Typical operations on a hash table include insertion, deletion and lookup
(although some hash tables are precalculated so that no insertions or deletions,
only lookups are done on a live system). These operations are all performed in
amortized constant time, which makes maintaining and accessing a huge hash
table very efficient.

It is also possible to create a hash table statically where, for example, there is a
fairly limited fixed set of input values - such as the value in a single byte (or
possibly two bytes) from which an index can be constructed directly (see
section below on creating hash tables). The hash table can also be used
simultaneously for tests of validity on the values that are disallowed.

 Q.11. What do you mean by Threaded Binary Tree?

Ans.: Threaded binary tree may be defined as follows :

A binary tree is threaded by making all right child pointers that would
normally be null point to the inorder successor of the node, and all left child

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Modulo
http://en.wikipedia.org/wiki/Bit_masking
http://en.wikipedia.org/wiki/Bit_masking
http://en.wikipedia.org/wiki/Bit_masking
http://www.answers.com/topic/binary-tree

Algorithms and Data Structure 127

pointers that would normally be null point to the inorder predecessor of the
node."

A threaded binary tree makes it possible to traverse the values in the binary
tree via a linear traversal that is more rapid than a recursive in-order traversal.

It is also possible to discover the parent of a node from a threaded binary tree,
without explicit use of parent pointers or a stack, albeit slowly. This can be
useful however where stack space is limited, or where a stack of parent
pointers is unavailable.

This is possible, because if a node (k) has a right child (m) then m's left pointer
must be either a child, or a thread back to k. In the case of a left child, that left
child must also have a left child or a thread back to k, and so we can follow
m's left children until we find a thread, pointing back to k. The situation is
similar for when m is the left child of k

In pseudocode,

function getParent(node : pointer to a node)

begin

 if node == tree.root then

 begin

 return nil

 end

 x = node

 y = node

 while true do

 begin

 if IsThread(Y, Right) then

 begin

 p = y.right

 if (p == nil) or (p.left <> node) then

 begin

 p = x

 while not IsThread(p, Left) do

http://www.answers.com/topic/binary-tree
http://www.answers.com/topic/binary-tree
http://www.answers.com/topic/binary-tree
http://www.answers.com/topic/binary-tree
http://www.answers.com/topic/tree-traversal

128

 p = p.left

 p = p.left

 end

 return p

 end

 if IsThread(Y, Left) then

 begin

 p = x.left

 if (p == nil) or (p.left <> node) then

 begin

 p = y

 while not IsThread(p, Right) do

 p = p.right

 p = p.right

 end

 return p

 end

 x = x.left

 y = y.right

 end

Q.12. Define AVL Trees.

Ans.: An example of an unbalanced non-AVL tree

In computer science, an AVL tree is a self-balancing binary search tree, and the
first such data structure to be
invented[citation needed]. In an AVL
tree the heights of the two child
subtrees of any node differ by at
most one, therefore it is also called
height-balanced. Lookup, insertion,

http://www.answers.com/topic/computer-science
http://www.answers.com/topic/self-balancing-binary-search-tree
http://www.answers.com/topic/tree-height
http://www.answers.com/topic/tree-data-structure
http://www.answers.com/topic/self-balancing-binary-search-tree

Algorithms and Data Structure 129

and deletion all take O(log n) time in both the average and worst cases.
Additions and deletions may require the tree to be rebalanced by one or more
tree rotations.

The AVL tree is named after its two inventors, G.M. Adelson-Velsky and E.M.
Landis, who published it in their 1962 paper "An algorithm for the
organization of information."

The balance factor of a node is the height of its right subtree minus the height
of its left subtree. A node with balance factor 1, 0, or -1 is considered balanced.
A node with any other balance factor is considered unbalanced and requires
rebalancing the tree. The balance factor is either stored directly at each node or
computed from the heights of the subtrees.

AVL trees are often compared with red-black trees because they support the
same set of operations and because red-black trees also take O(log n) time for
the basic operations. AVL trees perform better than red-black trees for lookup-
intensive applications.[1] The AVL tree balancing algorithm appears in many
computer science curricula.

The same tree after being height-balanced.

Explanation : First, see binary tree for an explanation of a normal binary tree.
An AVL tree operates exactly like a normal binary tree, except additional work
is done after an insertion and a deletion.

The problem with normal binary trees is that if data is added in-order then the
tree isn't a tree at all - it's a list. For example, if we had five data to add to a
tree where each datum is an integer, and we added the integers 1, 2, 3, 4 and 5,
in that order, the tree would not branch at all - it would be a single long line.

http://www.answers.com/topic/big-o-notation
http://www.answers.com/topic/tree-rotation
http://www.answers.com/topic/georgy-adelson-velsky
http://www.answers.com/topic/yevgeniy-landis
http://www.answers.com/topic/yevgeniy-landis
http://www.answers.com/topic/yevgeniy-landis
http://www.answers.com/topic/red-black-tree
http://www.answers.com/topic/big-o-notation
http://www.answers.com/topic/avl-tree#wp-_note-0%23wp-_note-0
http://www.answers.com/topic/binary-tree

130

This is a problem because the whole point of a binary tree is that searching is
fast because when the tree is balanced, each step in the search eliminates half
of the tree at that point. (Imagine a very large, fully balanced tree; you start at
the root node, and go left or right. In doing so, you've just eliminated half the
elements from your search!)

So to solve this problem, an AVL tree can be used, which as mentioned, acts as
a normal binary tree but does additional processing after an add or delete, so
that the tree remains balanced, no matter what order data is placed (or
removed) from the tree.

Now, to perform balancing work on the tree, we have to know when the tree
is unbalanced - because we have to know when we need to fix things. One
possible way to do this is to keep track in each node of the tree how many
nodes exist on the left and right of each node. When we add a node, or delete a
node, we travel up the tree from the point the node is added or deleted,
updating the node counts. If the number of nodes is different, we know that
the tree to the left and right cannot be balanced, because there are a different
number of elements on each side.

However, this doesn't quite work - the problem is that the number of elements
in a subtree doesn't tell you anything about how they are arranged. They
could be properly balanced, or they could be a long list!

In fact what you need to keep track of is the depth of the subtree. A full
subtree with a depth of three would have fourteen elements - and it would be
perfectly balanced. A subtree with a depth of three which is unbalanced might
have only three elements in (a list) - and so be in need of rebalancing.

Each time an element is added, we in fact update a count of the depth of the
subtree on the left and right of each node. We travel up the tree from the point
of addition, updating those values by adding one. We then travel back up the
same path, this time rearranging the tree so that the subtree depths remain
equal on each side.

(In fact, subtree depths must be equal or differ only by one - after all, we could
have three elements on the left and two on the right, which would still be as
balanced as possible. If we rebalanced that tree, all we'd do is then have two
elements on the left and three on the right; we wouldn't gain anything).

Algorithms and Data Structure 131

Rebalancing the tree involves performing left and right rotation operations on
unbalanced nodes, which adjusts the physical shape of the tree which keeping
it logically valid (e.g. binary search down the tree remains correct).

In fact, the tree is rebalanced every time a node is inserted or deleted, which
specifically limits the things that can have to be done to rebalance the tree,
because the tree can never be more than one sub-tree depth out of balance.

Operations : The basic operations of an AVL tree generally involve carrying

out the same algorithms as would be carried out on an unbalanced binary
search tree, but preceded or followed by one or more of the so-called "AVL
rotations."

 Insertion : Insertion into an AVL tree may be carried out by inserting
the given value into the tree as if it were an unbalanced binary search tree, and then
retracing one's steps toward the root updating the balance factor of the
nodes.[citation needed]

If the balance factor becomes -1, 0, or 1 then the tree is still in AVL form,
and no rotations are necessary.

If the balance factor becomes 2 or -2 then the tree rooted at this node is
unbalanced, and a tree rotation is needed. At most a single or double
rotation will be needed to balance the tree.[citation needed]

Only the nodes traversed from the insertion point to the root of the tree
need be checked, and rotations are a constant time operation, and
because the height is limited to O(log(n)), the execution time for an
insertion is O(log(n)).

 Deletion : If the node is a leaf, remove it. If the node is not a leaf,
replace it with either the largest in its left subtree or the smallest in its right subtree,
and remove that node. Thus the node that is removed has at most one child. After
deletion retrace the path back up the tree to the root, adjusting the balance factors as
needed.

The retracing can stop if the balance factor becomes -1 or 1 indicating
that the height of that subtree has remained unchanged. If the balance
factor becomes 0 then the height of the subtree has decreased by one

http://www.answers.com/topic/binary-search-tree
http://www.answers.com/topic/binary-search-tree
http://www.answers.com/topic/binary-search-tree
http://www.answers.com/topic/tree-rotation

132

and the retracing needs to continue. If the balance factor becomes -2 or
2 then the subtree is unbalanced and needs to be rotated to fix it. If the
rotation leaves the subtree's balance factor at 0 then the retracing
towards the root must continue since the height of this subtree has
decreased by one. This is in contrast to an insertion where a rotation
resulting in a balance factor of 0 indicated that the subtree's height has
remained unchanged.

The time required is O(h) for lookup plus O(h) rotations on the way
back to the root; so the operation can be completed in O(log n) time.

□ □ □

Algorithms and Data Structure 133

BACHELOR OF COMPUTER APPLICATIONS

(PART-I) EXAMINATION

ALGORITHMS AND DATASTRUCTURES

PAPER – 118

OBJECTIVE PART- I

Year - 2011

Time allowed : One Hour Maximum Marks : 20

The question paper contains to 40 multiple choice questions with four choices and

student will have to pick the correct one (each carrying ½ mark).

1. What is a compact and informal high level description of a computer programming
algorithm that use the structural conventions of a programming language, but is

intended for human reading rather than machine reading?
 (a) Pseudocode

(b) Algorithm
 (c) Flowchart

(d) Website ()

2. Which one is the desirable characteristics of an algorithm?

 (a) Correctness and ease of understanding
 (b) Elegance and efficiency
 (c) Both (a) and (b)

 (d) None of the above ()

3. An algorithm that calls itself directly or indirectly is known as :
 (a) Subalgorithm
 (b) Recursion

 (c) Polish Notation
 (d) Nesting ()

4. Which of the following case does not exist in complexity theory?
 (a) Best Case (b) Average Case

 (c) Null Case (d) Worst Case ()

5. Two main measures for the efficiency of an algorithm are:

134

 (a) Processor and memory

 (b) Complexity and capacity
 (c) Time and space
 (d) Data and space ()

6. The memory address of the first element of an array is:

 (a) base address
 (b) main address
 (c) reference

 (d) first address ()

7. Which of the following is not a basic data structure that could be used to implement an
abstract data type?

 (a) Array (b) Linked List

 (c) Hash table (d) Heap ()

8. What term is used to describe an O(n) algorithm?
 (a) Constant (b) Linear
 (c) Logarithmic (d) Quadratic ()

9. What is the time required to search an element in a linked list of length n?

 (a) 2(log)O n (b) ()O n

(c) (1)O (d)
2()O n ()

10. What is the time complexity of linear search algorithm over an array of n ?

 (a) 2(log)O n (b) ()O n

 (c) 2(log)On n (d)
2()O n ()

11. Which data structure is needed to convert infix notations to postfix notations?

 (a) Linear List (b) Queue
 (c) Tree (d) Stack ()

12. Sorting is not possible by using which of the following method?
 (a) Insertion (b) Selection

 (c) Exchange (d) Deletion ()

13. In tree construction which is the suitable efficient data structure?

 (a) Array (b) Linked List
 (c) Stack (d) Queue ()

Algorithms and Data Structure 135

14. Which of the following abstract data types are not used by integer Abstract data type
group?

 (a) short (b) int

 (c) float (d) long ()

15. If the depth of a tree is 3 levels, then what is the size of the tree?
 (a) 4 (b) 2
 (c) 8 (d) 6 ()

16. A Linked List index is ………………..that represents the position of a node in a

linked list:
 (a) an integer (b) a variable
 (c) a character (d) a boolean ()

17. What happens when you push a new node onto a stack?

(a) the new node is placed at the front of the linked list
(b) the new node is placed at the back of the linked list

 (c) the new node is placed at the middle of the linked list

 (d) no changes happens ()

18. The maximum number of nodes in a binary tree of depth k is:

 (a)
12k
 (b)

(1)2 k

 (c) 2 1k
 (d)

(1) 12 k
 ()

19. Which of the following is not a property of the binary tree?

 (a) There is a specially designated node called the root
 (b) The rest of the nodes could be partitioned into t-disjoint sets t > = 0
 (c) Any node should be reachable from anywhere in the tree

(d) At most one cycle could be present in the tree ()

20. If there exists at least one path between every pair of vertices in a graph, the graph is
known as:

 (a) Complete graph

 (b) Disconnected graph
 (c) Connected graph

 (d) Euler graph ()

21. A simple graph with n vertices and k components can have at most:

 (a) n edges (b) n k

136

 (c) ()(1)/2nk nk edges (d) ()(1)/2nk nk edges ()

22. The element at the root of heap is:
 (a) Largest

(b) Smallest
 (c) Depends of the type of heap
 (d) None of the above ()

23. Minimum number of queues needed to implement the priority queue is:

 (a) 1 (b) 3
 (c) 2 (d) 0 ()

24. The Queue data structure follows the order:
 (a) LIFO

(b) Random
 (c) FIFO

(d) None of the above ()

25. The underflow condition for the circular queue is when:
 (a) Front = rear

(b) Front = rear + 1
(c) Rear – front = 1

(d) None of the above ()

26. Which of the following sorting algorithms has average case and worst case running

time of?
 (a) Bubble sort (b) Insertion sort

 (c) Merge sort (d) Quick sort ()

27. A variable P is called pointer if :

 (a) P contains the address of an element in DATA
(b) P points to the address of the first element in DATA

 (c) P can store only memory addresses
 (d) P contains the DATA and the address of DATA ()

28. Which of the following data structure store the homogeneous data elements?
 (a) Arrays

 (b) Records
 (c) Pointers

(d) None of the above ()

Algorithms and Data Structure 137

29. In a graph if e = (u, v) means:
 (a) u is adjacent to v but v is not adjacent to u
 (b) e begins at u and ends at v

 (c) u is preprocessor and v is successor
(d) both (b) and (c) ()

30. A connected graph T without any cycles is called:
 (a) a tree graph

 (b) free tree
 (c) a tree

 (d) All of the above ()

31. The post order traversal of a binary tree is DEBFCA. Find out the preorder traversal:

 (a) ABFCDE (b) ADBFEC
 (c) ABDECF (d) ABDCEF ()

32. Binary search algorithm cannot be applied to:
 (a) Sorted Linked List (b) Sorted Binary Trees

 (c) Sorted Linear Array (d) Pointer Array ()

33. The complexity of Bubble Sort algorithm is:

 (a) ()O n (b) (log)O n

 (c)
2()O n (d) (log)On n ()

34. The complexity of Merge Sort algorithm is:

 (a) ()O n (b) (log)O n

 (c)
2()O n (d) (log)On n ()

35. Finding the location of the element with a given value is:

 (a) Traversal
 (b) Search

(c) Sort
 (d) None of the above ()

36. A Huffman tree is a kind of:
 (a) Full binary tree

(b) Binary search tree
 (c) Complete binary tree

138

 (d) None of the above ()

37. A linked list object keeps its collection of items:
 (a) on the heap

 (b) on the stack
 (c) at consecutive memory locations

 (d) all of the above ()

38. A video game server keeps a list of people waiting to play. The list should be a:

 (a) Binary search tree (b) Stack
 (c) Queue (d) Static array ()

39. Which one is not a type of Sorting Technique?
 (a) Radix Sort (b) Binary Sort

 (c) Decimal Sort (d) Both (b) and (c) ()

40. A sort which compares adjacent elements in a list and switches where necessary is:
(a) insertion sort (b) heap sort

 (c) quick sort (d) bubble sort ()

Algorithms and Data Structure 139

DESCRIPTIVE PART – II

Year- 2011

Time allowed: 2 Hours Maximum Marks : 30

Attempt any four descriptive type questions out of the six. All questions carry 7½ marks

each.

Q.1 (a) What is complexity of an algorithm? How is it measured? Discuss time space
trade off with an example.

(b) What is Polish Notation? Explain with example.

Q.2 (a) What do you mean by Sorting and Searching? Explain linear search algorithm
and derive its best-case, average-case and worst-case complexity.

 (b) What is an array? Discuss limitation of an array.

Q.3 (a) Design a string manipulation algorithm for duplicating a given character string

N times.
(b) What do you mean by traversal of a tree? Explain the difference between

preorder and post order traversal with an example.

Q.4 Differentiate the following :

(a) Graph and Tree;
 (b) Internal and External Sorting;

 (c) Recursion and Iteration;
 (d) Stack and Queue.

Q.5 (a) Write an algorithm for creation of Singly Linked List. Also write algorithms
for insertion and deletion of elements from the singly linked list.

 (b) Discuss Huffman encoding scheme with an example.

Q. 6 Write short notes on the following:

 (a) Abstract data type;
 (b) Hash Table;

 (c) Bubble Sort;
 (d) Binary Tree.

140

ALGORITHMS AND DATA STRUCTURES

OBJECTIVE PART- I

Year - 2010

Time allowed : One Hour Maximum Marks : 20

The question paper contains to 40 multiple choice questions with four choices and

student will have to pick the correct one (each carrying ½ mark).

1. Two main measures for the efficiency of an Algorithm are:
 (a) Processor and Memory (b) Complexity and Capacity

 (c) Time and Space (d) Data and Space ()

2. The time factor when determining the efficiency of an algorithm is measured by:

 (a) Counting microseconds
 (b) Counting the number of key operations

 (c) Counting the number of statement
 (d) Counting the Kilobytes of algorithm ()

3. A data structure is a way of:
 (a) arrangement of different data elements

 (b) organizing data with consideration of items stored into it along with their
 relationship with each other
 (c) ordering of collected data

 (d) None of the above ()

4. The space factor when determining the efficiency of algorithm is measured by:
 (a) Counting the maximum memory needed by the algorithm
 (b) Counting the minimum memory needed by the algorithm

 (c) Counting the average memory needed by the algorithm
 (d) Counting the maximum disk space needed by the algorithm ()

5. The de-que process removes data:
 (a) From the front of the queue

 (b) From the bottom of the queue
 (c) Can not be removed

 (d) None of the above ()

Algorithms and Data Structure 141

6. A queue is a :

 (a) Sequential Organization of data
 (b) Listing of data
 (c) Indexing of data

 (d) None of the above ()

7. ………………….is a way of grouping things together by placing one thing on top of
another and then removing things one at a time from the top.

 (a) Array

(b) Stack
 (c) Pointer

(d) All of the above ()

8. The complexity of Binary Search algorithm is:

 (a) O (n) (b) O (log n)
 (c) O (n2) (d) O (n log n) ()

9. The complexity of Bubble Sort algorithm is:
 (a) O (n) (b) O (log n)

 (c) O (n2) (d) O (n log n) ()

10. Each array declaration need not give, implicitly or explicitly, the information about:
(a) the name of array
(b) the data type of array

 (c) the first data from the set to be stored
 (d) the index set of the array ()

11. Which of the following is not linear data structure?
 (a) Arrays

 (b) Linked lists
 (c) Both of the above

 (d) None of the above ()

12. Finding the location of the element with a given value is:

 (a) Traversal
(b) Search

 (c) Sort
(d) None of the above ()

13. The operation of processing each element in the list is known as:

142

 (a) Sorting (b) Merging

 (c) Inserting (d) Traversal ()

14. Arrays are best data structures :

 (a) for relatively permanent collections of data
(b) for the size of the structure and the data in the structure are constantly changing

 (c) for both of above situation
 (d) for none of the above situation ()

15. Linked lists are best suited:
 (a) For relatively permanent collections of data

(b) for the size of the structure and the data in the structure are constantly changing
 (c) for both of above situation
 (d) for none of the above situation ()

16. In tree construction which is the suitable efficient data structure :

 (a) array (b) linked lists
 (c) stack (d) queue ()

17. By a schematics character variable we mean:
(a) A variable whose length is defined before the program is executed and cannot

change through the program
(b) A variable whose length may vary during the execution of the program as long

as the length does not exceed a maximum value determined by the program

before the program is executed
 (c) (a) and (b) both

 (d) None of the above ()

18. In this STACKS, "PUSH" is the term used to:

 (a) insert an element into a stack
 (b) delete an element from a stack

 (c) modify the existing element of a stack
 (d) None of the above ()

19. Maximum number of queues needed to implement the priority queue:
 (a) Three (b) Two

 (c) Five (d) One ()

20. Polish notation refers to the notations in which:

 (a) the operator symbol is placed after its two operands

Algorithms and Data Structure 143

 (b) the operator symbol is placed before its two operands

 (c) the operator symbol is placed in the middle
 (d) None of the above ()

21. A node has ………………….elements.
 (a) None (b) One

 (c) Two (d) Three ()

22. Which of the following abstract data types are not used by Integer Abstract Data Type

group?
 (a) Short (b) Int

 (c) Float (d) Long ()

23. There are…………………………..standard ways of maintaining a graph G in the

memory of a computer.
 (a) four

 (b) three
 (c) two
 (d) None of the above ()

24. In the sequential representation of Graph G in computer, it may be difficult to:

 (a) insert nodes in G
(b) delete nodes in G

 (c) (a) and (b) Both

(d) None of the above ()

25. The three standard ways of traversing a binary tree is:
 (a) Process the Root R
 (b) Traverse the left subtree of R in procedure

 (c) Traverse the right subtree of R in preorder
 In order is:

 (a) (2) (1) (3) (b) (3) (2) (1)
 (c) (1) (2) (3) (d) None of the above ()

26. Recursion may be implemented by means of:
 (a) Stacks

(b) Binary Tree
 (c) Queue

(d) None of the above ()

144

27. An array PTR is called a pointer array if each element of a PTR is a:

 (a) Integer
(b) Null element

 (c) Pointer

(d) None of the above ()

28. Two condition of Binary Search algorithm are:
(a) the list must be sorted and one must have direct access to the middle element in

any sub list

(b) the list must be sorted and one must have direct access to the last element in
any sub list

 (c) only list is sorted
 (d) None of the above ()

29. Variables that can be accessed by all program modules are called:
 (a) Private variables

(b) Global variables
 (c) Static variables

(d) None of the above ()

30. Liner array is a :

 (a) List of finite number n of heterogeneous data elements
 (b) List of finite number, n of homogenous data elements
 (c) (a) and (b) both

 (d) None of the above ()

31. How many null branches are there in a binary tree with 20 nodes:
 (a) Zero

(b) Thirty

 (c) Twenty one
(d) None of the above ()

32. Equivalent Prefix notations for the expression:
 ((A+B)*C (D–E)^(F+G)) is :

 (a) ^_*+ABC–DE+FG
 (b) *_^+ABC–DE+FG

 (c) ^+*_ABC–DE+FG
 (d) None of the above ()

33. Queue are also called:

Algorithms and Data Structure 145

 (a) LIFO lists

(b) FIFO lists
 (c) Linked lists
 (d) None of the above ()

34. Quick sort is an algorithm of the :

 (a) Modern type
 (b) Divide and conquer type
 (c) Slower efficiency

 (d) None of the above ()

35. Deletion of elements in a queue can take place at:
 (a) both end
 (b) one end

 (c) in the middle
 (d) None of the above ()

36. An input restricted deque is the one that allows:
 (a) insertion at only one end of the list but allows deletions at both of the list

(b) insertions at both ends of the list but allows deletion at only one end of the list
 (c) uncertain insertion and deletion of elements at both ends

 (d) None of the above ()

37. A binary tree T is said to be a 2-tree or an extended binary tree if each node N:

 (a) has either O or 2 children
 (b) has maximum number of children

 (c) has odd number of children
 (d) None of the above ()

38. Data items that are divided into sub items are called:
 (a) Elementary item

 (b) Group item
 (c) (a) and (b) Both
 (d) None of the above ()

39. DELETE (ABCDEFG', 4,2) results into:

 (a) ABCDG
 (b) ABCD
 (c) ACDEFG

 (d) None of the above ()

146

40. Complexity of searching algorithm measured in terms of :
(a) the umber f (n) of comparisons required to find item in DATA where DATA

contain n elements

 (b) O (log2n) comparisons
 (c) O (n2) comparisons

 (d) None of the above ()

Answer Key

1. (c) 2. (a) 3. (b) 4. (a) 5. (a) 6. (a) 7. (b) 8. (b) 9. (c) 10. (c)

11. (d) 12. (b) 13. (d) 14. (a) 15. (b) 16. (b) 17. (b) 18. (a) 19. (b) 20. (b)

21. (d) 22. (c) 23. (c) 24. (c) 25. (a) 26. (a) 27. (c) 28. (a) 29. (b) 30. (b)

31. (c) 32. (a) 33. (b) 34. (b) 35. (b) 36. (a) 37. (a) 38. (a) 39. (a) 40. (a)

Algorithms and Data Structure 147

DESCRIPTIVE PART – II

Year- 2010

Time allowed: 2 Hours Maximum Marks : 30

Attempt any four descriptive type questions out of the six. All questions carry 7½ marks

each.

Q.1 (a) What is pseudo code? How can we analyze various algorithms?
(b) What do you mean by abstract data type? Explain abstract data types and C++

classes.

Q.2 (a) Explain string functions for inserting and deleting string from the text.
 (b) Describe the pattern matching algorithm with suitable examples.

Q.3 (a) What is dequeue? Describe the chief characteristics of dequeue.

(b) Explain PUSH and POP operations of the stack with suitable examples. What
 is over flow condition in it?

Q.4 (a) What is linear search? Compare the linear search method with Binary Search
 Method.

 (b) Explain Bubble Sort Algorithm. Sort the following list using bubble sort.
 61,8,32,53,81,64.

Q.5 (a) What is a Hash table? Explain the significance of it.

 (b) What is priority queue? Explain Huffman's algorithm.

Q. 6 Write short notes on (any three) of the following:
 (a) Representation of Binary tree in memory.
 (b) Merge sort (example)

 (c) Warshall's algorithm
 (d) Quick sort (example)

 (e) Linked list

148

ALGORITHMS AND DATA STRUCTURES

OBJECTIVE PART- I

 Year - 2009

Time allowed : One Hour Maximum Marks : 20

The question paper contains to 40 multiple choice questions with four choices and

student will have to pick the correct one (each carrying ½ mark).

1. The process of arranging data in increasing order is called:

 (a) Sorting (b) Data Arrangement
 (c) Merging (d) Indexing ()

2. What is the complexity of linear Search?
 (a) O (log2 n) (b) O (n)

 (c) O (n log2 n) (d) O (n2) ()

3. Complexity measures are:

 (a) time
(b) speed

 (c) both (a) & (b)
(d) None of the above ()

4. Which of the following is LIFO structure?
 (a) Stack (b) Queue

 (c) Tree (d) Graph ()

5. What is the lower bound of an array in C?

 (a) 1 (b) 0
 (c) Garbage (d) –1 ()

6. The elements of an array are accessed by:
 (a) Accessing function in built – in data structure

 (b) Mathematical function
 (c) Index

 (d) None of the above ()

7. Array is:

Algorithms and Data Structure 149

 (a) Linear Data Structure

(b) Non Linear Data Structure
 (c) Complex Data Structure

(d) None of the above ()

8. A dynamically allocated memory can be returned to the system by using :

 (a) malloc () (b) Calloc ()
 (c) realloc () (d) free () ()

9. If char * name = Dishita",; statement is executed successfully, then what will be the
value of * name?

 (a) D
(b) Dishita

 (c) Garbage

(d) None of the above ()

10. String Concatenate means:
 (a) Copying one string to another
 (b) Adding one string at end of the other

 (c) Adding one string at beginning of the other
 (d) None of the above ()

11. What is the minimum number of field with each node of doubly linked list?
 (a) 1 (b) 2

 (c) 3 (d) 4 ()

12. The address field of a linked list:
 (a) Contain address of the next node
 (b) Contain address of the next pointer

 (c) May contain NULL address
 (d) Both (a) and (c) ()

13. It is appropriate to represent a queue is:
 (a) A circular list (b) Doubly linked list

 (c) Linear linked list (d) Array ()

14. NULL pointer is used to tell:
(a) End of linked list
(b) Empty pointer field of a structure

 (c) the linked list is empty

150

 (d) All of the above ()

15. The operations push () and pop () are associated with:
 (a) Stack

(b) Queue
 (c) Tree

(d) All of the above ()

16. The infix expression A + (B –C) * D is correctly represented in prefix notation is:

 (a) A +B – C *D (b) +A * – BCD
 (c) ABC–D*+ (d) A+BC –D* ()

17. A linear list of elements in which deletion can be done from one end and insertion can

take place only at the other end is known is:

 (a) Queue (b) Stacks
 (c) Tree (d) Branch ()

18. A binary search tree is generated by inserting in order the following integers:
 50,15,62,5,20,58,91,3,8,37,60,24,

The number of nodes in the left subtree and right subtree of the root respectively is:
 (a) 4,7 (b) 7,4

 (c) 8,3 (d) 3,8 ()

19. In the balanced binary search tree:

 (a) Balance factor each node is either - – 1,0 or 1
 (b) Balance factor of each node is 0

 (c) Balance factor of each node is either –2, –1, 0, 1, 2
 (d) A binary search tree is always balanced ()

20. In which traversal algorithm, the items are printed in Ascending order?
 (a) Preorder

(b) Post order
 (c) In order

(d) All of the above ()

21. The heap (represented by an array) constructed from the list of number :

 30,10,80,60,15,55,17, is :
 (a) 60,80,,55,30,10,17,15
 (b) 80,55,60,15,10,30,17

 (c) 80,60,30,17,55,15,10,

Algorithms and Data Structure 151

 (d) None of the above ()

22. Breadth first search :
 (a) Scans all incident edges before moving to other vertex

 (b) Scans all adjacent unvested vertex as soon as possible
 (c) Is same as backtracking

 (d) None of the above ()

23. Which method of traversal does not use stack to hold nodes that are waiting to be

 processed >
 (a) Breadth First

 (b) Depth first
 (c) D-search
 (d) None of the above ()

24. A binary tree with nodes has……….number of Null links.

 (a) n +1 (b) 2n
 (c) n +2 (d) n–1 ()

25. How many cycles should be contained in a tree?
 (a) 0

 b) At least 1
 (c) Any number
 (d) None of the above ()

26. A balanced binary tree is a binary tree in which the height of the two subtree of every

node never differs by more than:
 (a) 2

(b) 1

 (c) 3
(d) None of the above ()

27. In which of the following tree must balance of each node be either 1, –1 or 0?
 (a) Threaded tree

 (b) Lexical ordered binary tree
 (c) AV tree

 (d) None of the above ()

28. Which of the following abstract data types can be used to represent a many to many

relation?

152

 (a) Tree, only (b) Plex, only

 (c) Graph, only (d) Both B and A ()

29. Graphic can be implemented using:

 (i) Arrays
 (ii) Linked list

 (iii) Stack
 (iv) Queue
 (a) (i), (ii) and (iv) (b) (i), (ii) and (iii)

 (c) (ii) and (iii) (d) (i) and (ii) ()

30. Adjacency matrix of a graph is:
 (a) Identity matrix

(b) Symmetric matrix

 (c) Asymmetric matrix
(d) None of the above ()

31. A technique which collects all detected space in free storage list is called:
 (a) Static memory allocation

 (b) Garbage collection
 (c) Dynamic memory

 (d) None of the above ()

32. If function DELETE (AAA BBB', 2,2) runs, result will be:

 (a) AABB
 (b) ABBB

 (c) AAAB
 (d) None of the above ()

33. Header of linked list is a special node at the :
 (a) Middle of the list (b) Beginning of the list

 (c) End of the linked list (d) Both (b) and (c) ()

34. Divide and Conquer algorithm may be viewed as a:

 (a) Recursive procedure
(b) Iterative procedure

 (c) Both of the above
(d) None of the above ()

35. A full binary tree with a non- leaf nodes contains:

Algorithms and Data Structure 153

 (a) 2n + 1 nodes (b) n +1 nodes

 (c) 2n + 5 nodes (d) log2 n nodes ()

36. A connected graph G is a Eular graph if an only if all vertices is known as:

 (a) Same degree (b) Different degree
 (c) Odd degree (d) Even degree ()

37. A vertex of degree one is called as:
 (a) Isolated vertex (b) Pendant vertex

 (c) Colored vertex (d) Null vertex ()

38. Using arrays most efficient implementation of Queue is as:
 (a) Linear queue

(b) Circular queue

 (c) Priority queue
(d) None of the above ()

39. Traversing means:
 (a) Accessing and Processing each record exactly once

 (b) Arranging and data in some given order
 (c) Finding the location of the record with a given key

 (d) None of the above ()

40. Stack is:

 (a) Static data structure
(b) In built data structure

 (c) Dynamic data structure
(d) None of the above ()

Answer Key

1. (a) 2. (b) 3. (c) 4. (a) 5. (b) 6. (c) 7. (a) 8. (a) 9. (a) 10. (b)

11. (c) 12. (a) 13. (c) 14. (a) 15. (a) 16. (b) 17. (a) 18. (b) 19. (a) 20. (c)

21. (c) 22. (b) 23. (a) 24. (a) 25. (a) 26. (b) 27. (c) 28. (c) 29. (d) 30. (b)

31. (b) 32. (b) 33. (b) 34. (c) 35. (d) 36. (d) 37. (b) 38. (a) 39. (a) 40. (b)

154

DESCRIPTIVE PART - II

Year- 2009

Time allowed: 2 Hours Maximum Marks : 30

Attempt any four descriptive type questions out of the six. All questions carry 7½ marks

each.

Q.1 (a) What do you mean by an algorithm? How do you measure the efficiency of

 the algorithm? Explain?

(b) What do you understand by multidimensional array? How will you assign the
 address of an array into a pointer and now using pointer how can you access

 the values in the array? Explain taking suitable example.

Q.2 (a) What is a doubly linked list? Why do we need it? Explain the insertion and
 deletion in a doubly linked list taking suitable example.
(b) What is stack? Explain push and pop operations mentioning the overflow and

underflow condition and taking suitable example.

Q.3 (a) What is Recursion? Explain it by giving the example of binary search
 algorithm.

(b) Convert the following expression into postfix by using a stack and then
 evaluate the postfix expression by using another stack?

32/ (14–6) + 4 * (6 + 16) –7

Q.4 (a) Explain the traversal algorithms for a binary tree by taking suitable example.

 (b) Short the following list by using heal sort algorithm.
 52,7,41,72,23,92,48,15

 Q.5 (a) Explain the linked representation of the following graph:

Algorithms and Data Structure 155

A

A

A

A

A

(b) What do you mean by Hashing? What is Hash Collision? How do you recover

from the hash collision? Explain you answer by giving a suitable example?

Q.6 Write short notes on any three of the following.
 (a) Data Abstraction
 (b) Priority Queue

 (c) Quick Sort (Example)
 (d) Radix Sort (example)

 (e) Threaded Binary Tree (Threads)

156

ALGORITHMS AND DATA STRUCTURES

OBJECTIVE PART- I

Year - 2008

Time allowed : One Hour Maximum Marks : 20

The question paper contains to 40 multiple choice questions with four choices and

student will have to pick the correct one (each carrying ½ mark).

1. Efficiently of an algorithm is measured by:

 (a) time used (b) space used
 (c) A and B (d) None ()

2. The pointer of the last node in a linked list contains:
 (a) Data item (b) Null value

 (c) Address (d) None ()

3. A node contains :

 (a) Information and link field
 (b) Information and data item

 (c) Address and link field
 (d) All of the above ()

4. Operating system periodically collect all the deleted space into the free storage list is
called:

 (a) Fragmentation
(b) Garbage collection

 (c) Overflow

(d) Underflow ()

5. Overflow means:
 (a) NO empty space available

(b) No item is available

 (c) Error
(d) none ()

6. The pointer available in two way list node:
 (a) INFO, FORW, BACK

Algorithms and Data Structure 157

(b) INFO, FORM, REVE

 (c) INFO, FRONT, REAR
(d) None ()

7. Stack is also called:
 (a) First in first out (b) Last in first out

 (c) First in last out (d) Last in last out ()

8. Data structure that take insertion and deletion only at beginning or the end, not in the

middle:
 (a) Linked list and linear array

(b) Stack and queues
 (c) Stack and linked list

(d) Linked list and queues ()

9. The element insert in stack through:

 (a) POP (b) PUSH
 (c) FIFO (d) LIFO ()

10. Which one shows that STACK is empty :
 (a) TOP = 0 or TOP = N

 (b) TOP = 0 or TOP = NULL
 (c) TOP = N or TOP = NULL
 (d) None ()

11. Which one is not in infix notation:

 (a) A+B (b) C–D
 (c) G/H (d) +AB ()

12. ……………is based on 'Divide and Conquer' paradigm:
 (a) Merge sort

(b) Quick sort
 (c) Heap sort

(d) All of the above ()

13. Complexity of quick sort :

 (a) n log2 n (b) log n
 (c) log n . n (d) n–1 ()

158

14. A ……………..is a linear list of elements in which deletion can take place only at one

end and insertion at other end?
 (a) Stack (b) Linked list
 (c) Queue (d) Tree ()

15. Dequeue stands for :

 (a) Double –single queue
(b) Double – ended queue

 (c) Double – circular queue

(d) None ()

16. Which one is non linear data structure :
 (a) Linked (b) Stack
 (c) Queue (d) Tree ()

17. Any node N in binary tree has either…….successor:

 (a) 0,1,2 (b) 1,2 N
 (c) 0,3,5 (d) All ()

18. A tree becomes – tree :
 (a) If each node N has either 0 or 2 children

 (b) Each node N has N children
 (c) Each node has no children
 (d) None ()

19. The depth of the complete tree Tn with n nodes is given by:

 (a) Dn = [log2 n+1] (b) Dn = [log n +1]
 (c) Dn = [logn 2 +1] (d) None ()

20. Threads are related to:
 (a) Linked list (b) Stack

 (c) Queues (d) Tree ()

21. Heap is related to:

 (a) Linked list (b) Stack
 (c) Tree (d) Queue ()

22. Graphs can be represented by:
 (a) G (V,E) (b) G = (B,C)

 (c) G = (A,B) (d) G = (A,C) ()

Algorithms and Data Structure 159

23. Complexity of buddle sort is:
 (a) O (n2) (b) O (n log2 n)
 (c) log n (d) O (n) ()

24. Complexity of Heapsort is:

 (a) O (n log2 n) (b) O (n)
 (c) log n (d) None ()

25. An edge e is called ………..if it has identical endpoints.
 (a) Loop (b) Multigraph

 (c) Forest (d) Extended tree ()

26. What will be the length of string 'string':

 (a) 6 (b) 7
 (c) 8 (d) None ()

27. A class is a :
 (a) Abstract data type

 (b) User defined data type
 (c) Binding of data and member function

 (d) All of the above ()

28. The following is an example of:

A E

C D

B

 (a) Graph (b) Multigraph
 (c) Tree (d) Weighted graph ()

29. Which one is the path of length 2 (refer Fig- A)
 (a) BAD (b) BCE

 (c) BCDE (d) BAED ()

30. A 4 – cycles in the graph (refer Fig A) :

160

 (a) ABCEA (b) CDEA

 (c) BADC (d) None ()
31. Degree of C i..e. deg (c) is (refer fig A):
 (a) 2 (b) 3

 (c) 4 (d) 1 ()

32. Which one is not a path (refer Fig A) :
 (a) BAD (b) BAC
 (c) ABC (d) CDE ()

33. Consider the binary tree (T) :

A

CB

D E F

 (a) DBEACF (b) ABDECF
 (c) DEBFCA (d) None ()

34. The in order traversal of tree (refer Fig B) :
 (a) DBEACF (b) DBEACF

 (c) DEBFCA (d) None ()

35. The post order traversal of tree (tree Fig B)
 (a) DEBFCA (b) DBEACF
 (c) ABDECF (d) NONE ()

36. Which of the following is a graph traversal method:

 (a) BFS (b) DFS
 (c) Both (d) None ()

37. A program is made up of:
 (a) constants

 (b) variables
 (c) instructions
 (d) all of the above ()

38. Which of the following is a flowchart symbol:

 (a) Decision (b) Flow lines

Algorithms and Data Structure 161

 (c) Both A & B (d) None ()

39. Recursion means:
 (a) function calling itself (b) Subroutine

 (c) Null function (d) None ()

40. A binary tree node that has no children is called:
 (a) Leaf node (b) Root node
 (c) Non leaf node (d) None ()

Answer Key

1. c) 2. (b) 3. (a) 4. (b) 5. (a) 6. (a) 7. (b) 8. (b) 9. (b) 10. (b)

11. (d) 12. (b) 13. (a) 14. (c) 15. (b) 16. (d) 17. (a) 18. (a) 19. (a) 20. (d)

21. (c) 22. (a) 23. (a) 24. (a) 25. (a) 26. (a) 27. (d) 28. (a) 29. (b) 30. (a)

31. (c) 32. (a) 33. (b) 34. (a) 35. (a) 36. (c) 37. (d) 38. (c) 39. (a) 40. (a)

162

DESCRIPTIVE PART - II

 Year- 2008

Time allowed: 2 Hours Maximum Marks : 30

Attempt any four descriptive type questions out of the six. All questions carry 7½ marks

each.

Q.1 (a) What are the criteria to measure the efficiency of any algorithm ?

 (b) Write the pseudo code with flowchart diagram for calculating factorial?

Q.2 (a) Explain time analysis space complexity.
 (b) Define the following in brief :
 (i) Sequential logic

 (ii) Selection logic
 (iii) Iteration logic

Q.3 (a) What are the difference between external and internal sorting?

(b) Explain briefly using a simple example the logic of the quick sort algorithm.
 Write a recursive a algorithm for quick sort and sort how quick sort would sort
 the array.

Q.4 (a) Discuss linear and non linear implementation of queues.

 (b) Write an algorithm for inserting an item into a linked list.

Q.5 (a) What is binary tree? Consider a following list and insert an item in order into
 an empty binary search tree?

(b) Describe an algorithm for find a minimum spanning tree T of a weighted
 graph G.

Q.6 Write short notes on the following :
 (i) Binary search

 (ii) Warshall's Algorithm
 (iii) Hashed searching

Algorithms and Data Structure 163

ALGORITHMS AND DATA STRUCTURES

OBJECTIVE PART- I

Year - 2007

Time allowed : One Hour Maximum Marks : 20

The question paper contains to 40 multiple choice questions with four choices and

student will have to pick the correct one (each carrying ½ mark).

1. Stack is also known as:
 (a) LIFO system

 (b) FIFO system
 (c) FIFO LIFO system

 (d) None of the system ()

2. A binary tree node that has no children is called:

 (a) Leaf node
 (b) Root Node

 (c) Non leaf node
 (d) None of the above ()

3. Which of the following sorting algorithm is based on the 'Divide and Conquer'
paradigm?

 (a) Quick sort
(b) Merge Sort

 (c) Heap Sort

(d) All of the above ()

4. The collection of same type of data is called:
 (a) A union
 (b) A structure

 (c) A graph
 (d) None of the above ()

5. The process of accession data stored in a tape is similar to manipulating data on a:
 (a) Stack (b) Queue

 (c) List (d) Heap ()

164

6. The initial configuration of a queue is P,Q, R,S (P is the front end). To the
configuration S,R,Q one needs a minimum of:

 (a) 2 addition and 3 deletion

 (b) 3 addition and 3 deletion
 (c) 3 addition and 4 deletion

 (d) 3 addition and 2 deletion ()

7. The depth n of the complete binary tree in with a nodes is gives by:

 (a) log2 (n +1) –1
 (b) log2 n+1

 (c) log2 (n–1) + 1
 (d) log2 n ()

8. What will be the expression for the following binary tree?
 (a) E = (a–b)/((c*d)+e)

 (b) E = a–b/c* d + e
 (c) E = a – (b/c *d) +e
 (d) E =(a–b/c) * (d+e) ()

9. One of the more popular balanced trees was introduced in 1962 by adelson-velski and

Landis is known as:
 (a) AVL Tree

(b) B Tree

 (c) M-way search tree
(d) None of the above ()

10. The following is an example of:

r

q

p

m

j

 (a) Skewed binary search tree (b) Binary tree
 (c) AVL search tree (d) Binary search tree ()

11. The following figure represents:

Algorithms and Data Structure 165

A D

CB

e1

e2 e3

e4

e5
 (a) Directed graph
 (b) Multigraph

 (c) AVL tree
 (d) None of the above ()

12. The operation of finding the location of a given item in a collection of items is called:
(a) Sorting

 (b) Searching
 (c) Listing

(d) None of the above ()

13. Worst case complexity of quick sort algorithm is:

 (a) O (n2)
(b) O (n log n)

 (c) O (lon n)

(d) None of those ()

14. Average case complexity of heap sort algorithm is:
 (a) O (n log n)
 (b) O (n2)

 (c) O (n)
 (d) O (n log2 n) ()

15. Hashing or has addressing is a technique of:
 (a) Searching

(b) Sorting
 (c) Both (a) and (b)

(d) None of the above ()

16. The notation in which operation symbol is placed before its two operands, is called:

(a) Infix notation

166

(b) Polish notation

 (c) Suffix notation
(d) None of the above ()

17. ……………….is the term used to delete an element from a stack.
 (a) PUSH (b) POP

 (c) DEL (d) Both B and C ()

18. When a called function in turn calls another function a process of chaining occurs. A

special case of this process, where a function calls itself is called.
 (a) Recursion (b) Deletion

 (c) Insertion (d) Overloading ()

19. Sparse matrices have:

 (a) Many zero elements
(b) Many non zero elements

 (c) Higher dimension
(d) None of the above ()

20. Length of the string "Manisha" is :
 (a) 7

(b) 8
 (c) either 7 or 8

(d) None of the above ()

21. What will be the results of insert (' ABCDEFG',3 XYZ)?

 (a) ABCDEFGXYZ
 (b) ABXYZCDEFG
 (c) ABCXYZDEFG

 (d) None of the above ()

22. The string with zero characters is called:
 (a) Empty string (b) Null string
 (c) Full string (d) Both A and B ()

23. The variables which can be accessed only within a particular program of subprogram

are known as:
 (a) Local variables
 (b) Global variable

 (c) Auto variables

Algorithms and Data Structure 167

 (d) External variables ()

24. Which of the following is a data structure?
 (a) Array

(b) Linked list
 (c) Tree

(d) All of the above ()

25. A collection of related data- items or fields or attributes is called a:

 (a) Record
(b) File

 (c) Database
(d) None of the above ()

26. Which of the following is a graph traversal method?
 (a) BFS

(b) DFS
 (c) Both BFS and DFS

(d) None of the above ()

27. Previously allocated memory returned to the system by using the function:

 (a) malloc () (b) calloc ()
 (c) free () (d) realloc() ()

28. The following figure represents :
1

3

2 5

4
 (a) Directed graph (b) Undirected graph
 (c) Unconnected graph (d) AVL tree ()

29. A special list maintained with the linked list in memory, which consists of unused

 memory cells and has its own pointer is called:
 (a) List of available space

(b) Free storage list

 (c) Free pool
(d) All of the above ()

168

30. If every edge in the graph is assigned some data, it is called:

 (a) Multi graph (b) Directed graph
 (c) Tree (d) Weighted graph ()

31. What is the minimum number of fields with each elements of a doubly linked list?
 (a) 1 (b) 2

 (c) 3 (d) 4 ()

32. Character data types are represented by the word?

 (a) int (b) float
 (c) char (d) ch ()

33. The running time T (n), where 'n' is the input size of recursive algorithm is given as

follows: T (n) = c +T (n –1 ;, if n >1,)

 D =1, if n<_1
 The order of algorithm is:

 (a) n2 (b) n
 (c) n3 (d) nn ()

34. If we use a 16-bit word length, the maximum size of the integer value is:
 (a) 216–1 (b) 215–1

 (c) 219–1 (d) 215 ()

35. A linear list of elements in which deletions can take place only at one end and

insertions can take place only at other end is called:
 (a) Stack (b) Queue

 (c) Deque (d) Linked list ()

36. Sometimes new data are to be inserted into a data structure but there is no available

space i.e. the free storage list is empty. This situation is usually called:
 (a) Underflow

(b) Overflow
 (c) Overflow

(d) None of the above ()

37. Which of the following is not a sorting technique?

 (a) Bubble (b) Binary
 (c) Radix (d) Insertion ()

38. The process of memory allocation at run time is known as:

Algorithms and Data Structure 169

 (a) Dynamic memory allocation

 (b) Static memory allocation
 (c) Compaction
 (d) Fragmentation ()

39. The following series is known as:

 0,1,1,2,3,5,8,13,21,34,55…………..
 (a) Fibonacci series (b) Natural number series
 (c) Compaction (d) Even number series ()

40. A header list where the last node points back to the header node is called :

 (a) A grounded header list
(b) A circular header list

 (c) Both (A) and (B)

(d) None of the above ()

Answer Key

1. (a) 2. (a) 3. (a) 4. (d) 5. (b) 6. (a) 7. (b) 8. (a) 9. (a) 10. (a)

11. (b) 12. (b) 13. (a) 14. (a) 15. (a) 16. (b) 17. (b) 18. (a) 19. (a) 20. (a)

21. (b) 22. (d) 23. (a) 24. (d) 25. (a) 26. (c) 27. (c) 28. (b) 29. (d) 30. (d)

31. (c) 32. (c) 33. (a) 34. (a) 35. (b) 36. (b) 37. (b) 38. (a) 39. (a) 40. (b)

170

DESCRIPTIVE PART - II

Year- 2007

Time allowed: 2 Hours Maximum Marks : 30

Attempt any four descriptive type questions out of the six. All questions carry 7½ marks

each.

Q.1 (a) What is string? Explain various string operations with suitable examples and

 show how these operations are used in word processing?

Q.2 (a) Explain array representation of stacks and queues.
 (b) Define infix, postfix and prefix notations giving examples of each.

Q.3 (a) What is linked list? Give two advantages of linked lists over arrays.
 (b) What is complete binary tree? How is differ from binary tree?

Q.4 (a) What is merging? Give complexity of the merging algorithm?

 (b) Sort eh following array using merge-sort:
 66,33,40,22,55,88,60,11,80,20,50,44,77,30

 Give the complexity of merge-sort algorithm.

Q.5 (a) What is a graph? Explain depth-first search Algorithm.

V4 V4

V4

V4

V4 V4

V4 V4

(b) Consider the graph G in the following figure:

Algorithms and Data Structure 171

a c

b

e d

 Find vertices, edges and degree of each node.

Q.6 Write short notes on any two :

 (a) Sparse matrices;

 (b) Variables:

 (c) Queue and dequeue;

 (d) Hasing technique.

172

ALGORITHMS AND DATA STRUCTURES

OBJECTIVE PART- I

Year - 2006

Time allowed : One Hour Maximum Marks : 20

The question paper contains to 40 multiple choice questions with four choices and

student will have to pick the correct one. (Each carrying ½ marks.).

1. FRONT and REAR words are related with:

 (a) Stack
(b) Queue

 (c) Linked list
(d) None of the above ()

2. Queue is also known as:
 (a) LIFO – system

(b) FIFO system
 (c) LIFO FIFO

(d) None of the above ()

3. For a sequential search, the average number of comparisons for a file with records is:

 (a) (n+1)/2 (b) log2 n
 (c) n2 (d) n/2 ()

4. A data structure, in which an element is added and removed only from one end is
known is:

 (a) Queue
(b) Stack

 (c) Array

(d) None of the above ()

5. Header of a linked list a special node at the:
 (a) End of the linked list

(b) Middle of the list

 (c) Beginning of the list

Algorithms and Data Structure 173

(d) None of the above ()

6. Adjacency matrix for a graph is:
 (a) Unimarix

(b) Symmetric
 (c) Asymmetric

(d) None of the above ()

7. What is the minimum number of fields with each element of a doubly linked list?

 (a) 1
 (b) 2

 (c) 3
 (d) 4 ()

8. The collection of same type of data is called:
 (a) An array

(b) A union
 (c) A structure

(d) None of the above ()

9. In a linear linked list, a node contains at least:
 (a) Node address field and next pointer filed
 (b) Node number and data field

 (c) An information field and next pointer field
 (d) None of the above ()

10. Which of the following sorting algorithm is based on the idea of "Divide" and

conquer?

 (a) Merge sort
(b) Heap sort

 (c) Both B and A
(d) None of the above ()

11. Which of the following is a method of searching?
 (a) Linear search (b) Bubble search

 (c) Insertion search (d) Selection search ()

12. The element at the root of heap is:

 (a) Largest

174

(b) Smallest

 (c) Depends on type of heap
(d) None of the above ()

13. Average case time complexity of quick sort algorithm is:
 (a) O (n log n)

 (b) O (log2
 n)

 (c) O (n2)
 (d) None of the above ()

14. The five items A B C D AND E are pushed in a stack, one after the another starting

from A. The stack is popped four times and each elements is inserted in a queue. The
two element are deleted from the queue and pushed back on the stack. Now one item is
popped from the stack. The popped items is:

 (a) A (b) B
 (c) C (d) D ()

15. Malloc function returns a NULL when:
 (a) Memory is successfully allocated

 (b) All memory is cleared
 (c) Space is insufficient to satisfy the request

 (d) None of the above ()

16. The process memory allocation at run time is known as:

 (a) Dynamic memory allocation (b) Static memory allocation
 (c) Compaction (d) fragmentation ()

17. Which of the following is not a type of tree?
 (a) Binary (b) Binary Search

 (c) AVL (d) Insertion ()

18. In which tree for every node the height of its left and right sub tree differ at last by
one?

 (a) Binary search tree

(b) AVL tree
 (c) Complete Tree

(d) None of the above ()

19. Which of the following is data structure operation?

 (a) Searching

Algorithms and Data Structure 175

(b) Sorting

 (c) Traversing
(d) All of the above ()

20. When of the following in turn calls another function a process of 'chaining' occurs. A
special case of this process, where a function calls itself is called:

 (a) Recursion (b) Delection
 (c) Insertion (d) Overloading ()

21. Which of the following abstract data types can be used to represent a many to many
relation:

 (a) Tree
(b) Graph

 (c) Both A and B

(d) None of the above ()

22. In the balanced binary tree given below, how many nodes become unbalanced when a
node inserted as a child of the node "g"

a

b

c

g

d

e

f

 (a) 1 (b) 3

 (c) 7 (d) 8 ()

23. Which of the following is a non linear data structure?
 (a) Tree only (b) Graph only
 (c) Array (d) Both tree and graph ()

24. If we use a 16- bit word length, the size of the integer value is limited to the range:

 (a) –26 to 26–1
 (b) –210 to 210–1
 (c) 215

 (d) –215 ()

25. Floating point data types are represented by the word:
 (a) int (b) floating
 (c) float (d) char ()

176

26. If there are n vertices in the graph then how many edges are needed to construct a
 minimum spanning tree?

 (a) n (b) n+1
 (c) n–1 (d) n2 ()

27. Which of the following is an advantage o using pointers:
 (a) Pointers reduce the length and complexity of a program

 (b) They increase the execution speed
 (c) Pointers are more efficient in handling the data tables

 (d) All of the above ()

28. What will be the expression for the following tree?

A *
D

CB

+ *

-

E

 (a) (A + (B * C)) – (D * E)
 (b) (A+B)* C –DE
 (c) ABC +*(D*E)

 (d) None of the above ()

29. A connection between two vertices is called:
 (a) edge

(b) vertex

 (c) tree
(d) none of the above ()

30. A node that has no children is called:
 (a) lead node

(b) root node
 (c) parent node

(d) none of the above ()

Algorithms and Data Structure 177

31. Following figure represents:

a

b

c

g

d

e

f

 (a) Directed Graph (b) Undirected graph
 (c) Unconnected graph (d) AVL tree ()

32. The fundamental operations used on a stack are:
 (a) PUSH

 (b) POP
 (c) Both A and B

 (d) None of the above ()

33. A linear list in which elements can be added or removed at either end but not in the

middle is called:
 (a) Queue (b) Dequeue

 (c) Stack (d) Linked list ()

34. FRONT : = REAR : = NULL, refers to empty

 (a) Stack (b) Queue
 (c) Array (d) Linked ()

35. Worst case complexity of heap sort is:
 (a) O (n2) (b) O (n log2 n)

 (c) o (n) (d) O (log2n) ()

36. Which of the following algorithm have worst case complexity as O (n2)?
 (a) Insertion sort

(b) Bubble sort

 (c) Quick sort
(d) All of the above ()

37. Which of the following is a hashing technique?
 (a) Division method

(b) Med square method
 (c) Folding method

178

(d) All of the above ()

38. POP is the term used to delete an elements from a :
 (a) Stack

 (b) Queue
 (c) Linked list

 (d) Tree ()

39. When new data are to be inserted into a data structure but there is no available space,

this situation is called :
 (a) Overflow (b) Underflow

 (c) Compaction (d) Fragmentation ()

40. The variables which can be accessed by all modules in a program, are known as:

 (a) Local variables (b) Internal variables
 (c) Global variables (d) Auto variables ()

Answer Key

1. (b) 2. (b) 3. (d) 4. (b) 5. (c) 6. (b) 7. (c) 8. (a) 9. (c) 10. (d)

11. (a) 12. (c) 13. (a) 14. (d) 15. (c) 16. (a) 17. (d) 18. (b) 19. (d) 20. (a)

21. (b) 22. (b) 23. (d) 24. (a) 25. (c) 26. (c) 27. (d) 28. (a) 29. (a) 30. (d)

31. (a) 32. (c) 33. (b) 34. (b) 35. (b) 36. (d) 37. (d) 38. (a) 39. (a) 40. (c)

Algorithms and Data Structure 179

DESCRIPTIVE PART - II

Year- 2006

Time allowed: 2 Hours Maximum Marks : 30

Attempt any four descriptive type questions out of the six. All questions carry 7½ marks

each.

Q.1 (a) What is data structure?

(b) Define array. Discuss the representation of linear arrays in memory and give
 any two advantage of linked over arrays.

Q.2 What is a tree? Explain any four types of trees with the help of suitable examples.

Q.3 (a) Consider the graph of the following figure.

Perform a breadth first search (BFS) beginning at vertex V1 list vertices in the

order in which they visited.

 (b) Construct a heap H from the following list of number:

 40,30,50,22,60,55,77,55

Q.4 What is difference between

(a) Stacks and queues

(b) local and global variables

(c) directed and undirected graph

(d) BFS and DFS.

180

Q.5 Write a short note on various data structure operations and explain binary search

 algorithm.

Q.6 Write a short note on:

 (a) Recursion (b) Polish Notation

(c) Data Types (d) Quick sort.

□ □ □ □ □ □

Algorithms and Data Structure 181

MCQ

1. Two main measures for the efficiency of an Algorithm are:
 (a) Processor and Memory (b) Complexity and Capacity

 (c) Time and Space (d) Data and Space (c)

2. The time factor when determining the efficiency of an algorithm is measured by:
 (a) Counting microseconds
 (b) Counting the number of key operations

 (c) Counting the number of statement
 (d) Counting the Kilobytes of algorithm (a)

3. A data structure is a way of:
 (a) arrangement of different data elements

 (b) organizing data with consideration of items stored into it along with their
 relationship with each other

 (c) ordering of collected data
 (d) None of the above (b)

4. The space factor when determining the efficiency of algorithm is measured by:
 (a) Counting the maximum memory needed by the algorithm

 (b) Counting the minimum memory needed by the algorithm
 (c) Counting the average memory needed by the algorithm
 (d) Counting the maximum disk space needed by the algorithm (a)

5. The de-que process removes data:

 (a) From the front of the queue
(b) From the bottom of the queue

 (c) Can not be removed

 (d) None of the above (a)

6. A queue is a :
 (a) Sequential Organization of data
 (b) Listing of data

 (c) Indexing of data
 (d) None of the above (a)

182

7. ………………….is a way of grouping things together by placing one thing on top of

another and then removing things one at a time from the top.
 (a) Array

(b) Stack

 (c) Pointer
(d) All of the above (b)

8. The complexity of Binary Search algorithm is:
 (a) O (n) (b) O (log n)

 (c) O (n2) (d) O (n log n) (b)

9. The complexity of Bubble Sort algorithm is:
 (a) O (n) (b) O (log n)
 (c) O (n2) (d) O (n log n) (c)

10. Each array declaration need not give, implicitly or explicitly, the information about:

 (a) the name of array
(b) the data type of array

 (c) the first data from the set to be stored

 (d) the index set of the array (c)

11. Which of the following is not linear data structure?
 (a) Arrays
 (b) Linked lists

 (c) Both of the above
 (d) None of the above (d)

12. Finding the location of the element with a given value is :
 (a) Traversal

(b) Search
 (c) Sort

(d) None of the above (b)

13. The operation of processing each element in the list is known as:

 (a) Sorting (b) Merging
 (c) Inserting (d) Traversal (d)

14. Arrays are best data structures :
 (a) for relatively permanent collections of data

(b) for the size of the structure and the data in the structure are constantly changing

Algorithms and Data Structure 183

 (c) for both of above situation

 (d) for none of the above situation (a)

15. Linked lists are best suited:

 (a) For relatively permanent collections of data
(b) for the size of the structure and the data in the structure are constantly changing

 (c) for both of above situation
 (d) for none of the above situation (b)

16. In tree construction which is the suitable efficient data structure :
 (a) array (b) linked lists

 (c) stack (d) queue (b)

17. By a schematics character variable we mean:

(a) A variable whose length is defined before the program is executed and cannot
change through the program

(b) A variable whose length may vary during the execution of the program as long
as the length does not exceed a maximum value determined by the program
before the program is executed

 (c) (a) and (b) both
 (d) None of the above (b)

18. In this STACKS, "PUSH" is the term used to:
 (a) insert an element into a stack

 (b) delete an element from a stack
 (c) modify the existing element of a stack

 (d) None of the above (b)

19. Maximum number of queues needed to implement the priority queue:

 (a) Three (b) Two
 (c) Five (d) One (a)

20. Polish notation refers to the notations in which:
 (a) the operator symbol is placed after its two operands

 (b) the operator symbol is placed before its two operands
 (c) the operator symbol is placed in the middle

 (d) None of the above (b)

21. A node has ………………….elements.

 (a) None (b) One

184

 (c) Two (d) Three (d)

22. Which of the following abstract data types are not used by Integer Abstract Data Type

group?
 (a) Short (b) Int

 (c) Float (d) Long (c)

23. There are…………………………..standard ways of maintaining a graph G in the

memory of a computer.
 (a) four

 (b) three
 (c) two
 (d) None of the above (c)

24. In the sequential representation of Graph G in computer, it may be difficult to:

 (a) insert nodes in G
(b) delete nodes in G

 (c) (a) and (b) Both

(d) None of the above (c)

25. The three standard ways of traversing a binary tree is:
 (a) Process the Root R
 (b) Traverse the left subtree of R in procedure

 (c) Traverse the right subtree of R in preorder
 In order is:

 (a) (2) (1) (3) (b) (3) (2) (1)
 (c) (1) (2) (3) (d) None of the above (a)

26. Recursion may be implemented by means of:
 (a) Stacks

(b) Binary Tree
 (c) Queue

(d) None of the above (a)

27. An array PTR is called a pointer array if each element of a PTR is a:

 (a) Integer
(b) Null element

 (c) Pointer

(d) None of the above (c)

Algorithms and Data Structure 185

28. Two condition of Binary Search algorithm are:
(a) the list must be sorted and one must have direct access to the middle element in

any sub list

(b) the list must be sorted and one must have direct access to the last element in
any sub list

 (c) only list is sorted
 (d) None of the above (a)

29. Variables that can be accessed by all program modules are called:
 (a) Private variables

(b) Global variables
 (c) Static variables

(d) None of the above (b)

30. Liner array is a :

 (a) List of finite number n of heterogeneous data elements
 (b) List of finite number, n of homogenous data elements
 (c) (a) and (b) both

 (d) None of the above (b)

31. How many null branches are there in a binary tree with 20 nodes:
 (a) Zero

(b) Thirty

 (c) Twenty one
(d) None of the above (c)

32. Equivalent Prefix notations for the expression:
 ((A+B)*C (D–E)^(F+G)) is :

 (a) ^_*+ABC–DE+FG
 (b) *_^+ABC–DE+FG

 (c) ^+*_ABC–DE+FG
 (d) None of the above (a)

33. Queue are also called:
 (a) LIFO lists

(b) FIFO lists
 (c) Linked lists
 (d) None of the above (b)

186

34. Quick sort is an algorithm of the :

 (a) Modern type
 (b) Divide and conquer type
 (c) Slower efficiency

 (d) None of the above (b)

35. Deletion of elements in a queue can take place at:
 (a) both end
 (b) one end

 (c) in the middle
 (d) None of the above (b)

36. An input restricted deque is the one that allows:
 (a) insertion at only one end of the list but allows deletions at both of the list

(b) insertions at both ends of the list but allows deletion at only one end of the list
 (c) uncertain insertion and deletion of elements at both ends

 (d) None of the above (a)

37. A binary tree T is said to be a 2-tree or an extended binary tree if each node N:

 (a) has either O or 2 children
 (b) has maximum number of children

 (c) has odd number of children
 (d) None of the above (a)

38. Data items that are divided into sub items are called:
 (a) Elementary item

 (b) Group item
 (c) (a) and (b) Both
 (d) None of the above (a)

39. DELETE (ABCDEFG', 4,2) results into:

 (a) ABCDG
 (b) ABCD
 (c) ACDEFG

 (d) None of the above (a)

40. Complexity of searching algorithm measured in terms of :
(a) the umber f (n) of comparisons required to find item in DATA where DATA

contain n elements

 (b) O (log2n) comparisons

Algorithms and Data Structure 187

 (c) O (n2) comparisons

 (d) None of the above (a)
41. The process of arranging data in increasing order is called:
 (a) Sorting (b) Data Arrangement

 (c) Merging (d) Indexing (a)
42. What is the complexity of linear Search?

 (a) O (log2 n) (b) O (n)
 (c) O (n log2 n) (d) O (n2) (b)
43. Complexity measures are:

 (a) time
(b) speed

 (c) both (a) & (b)
(d) None of the above (c)

44. Which of the following is LIFO structure?

 (a) Stack (b) Queue
 (c) Tree (d) Graph (a)

45. What is the lower bound of an array in C?
 (a) 1 (b) 0
 (c) Garbage (d) –1 (b)

46. The variables which can be accessed by all modules in a program, are known as:
 (a) Local variables (b) Internal variables

 (c) Global variables (d) Auto variables (c)
47. When new data are to be inserted into a data structure but there is no available space,

this situation is called :

 (a) Overflow (b) Underflow
 (c) Compaction (d) Fragmentation (a)

48. POP is the term used to delete an elements from a :
 (a) Stack
 (b) Queue

 (c) Linked list
 (d) Tree (a)

49. Which of the following is a hashing technique?
 (a) Division method

(b) Med square method

 (c) Folding method
(d) All of the above (d)

50. Which of the following algorithm have worst case complexity as O (n2)?
 (a) Insertion sort

(b) Bubble sort

 (c) Quick sort

188

(d) All of the above (d)

51. Worst case complexity of heap sort is:
 (a) O (n2) (b) O (n log2 n)
 (c) o (n) (d) O (log2n) (b)

52. FRONT : = REAR : = NULL, refers to empty
 (a) Stack (b) Queue

 (c) Array (d) Linked (b)
53. The fundamental operations used on a stack are:
 (a) PUSH

 (b) POP
 (c) Both A and B

 (d) None of the above (c)

54. Following figure represents:

a

b

c

g

d

e

f

 (a) Directed Graph (b) Undirected graph
 (c) Unconnected graph (d) AVL tree (a)

55. A node that has no children is called:
 (a) lead node

(b) root node
 (c) parent node

(d) none of the above (d)
56. A connection between two vertices is called:
 (a) edge

(b) vertex
 (c) tree

(d) none of the above (a)

Algorithms and Data Structure 189

57. What will be the expression for the following tree?

A *
D

CB

+ *

-

E

 (a) (A + (B * C)) – (D * E)

 (b) (A+B)* C –DE
 (c) ABC +*(D*E)
 (d) None of the above (a)

58. Which of the following is an advantage o using pointers:
 (a) Pointers reduce the length and complexity of a program

 (b) They increase the execution speed
 (c) Pointers are more efficient in handling the data tables
 (d) All of the above (d)

59. Floating point data types are represented by the word:
 (a) int (b) floating

 (c) float (d) char (c)

60. If there are n vertices in the graph then how many edges are needed to construct a

 minimum spanning tree?

 (a) n (b) n+1
 (c) n–1 (d) n2 (c)

61. If we use a 16- bit word length, the size of the integer value is limited to the range:
 (a) –26 to 26–1

 (b) –210 to 210–1
 (c) 215

 (d) –215 (a)

62. If we use a 16- bit word length, the size of the integer value is limited to the range:
 (a) –26 to 26–1

 (b) –210 to 210–1
 (c) 215

190

 (d) –215 (a)

63. Which of the following is a non linear data structure?
 (a) Tree only (b) Graph only
 (c) Array (d) Both tree and graph (d)

64. In the balanced binary tree given below, how many nodes become unbalanced when a

node inserted as a child of the node "g"

a

b

c

g

d

e

f

 (a) 1 (b) 3
 (c) 7 (d) 8 (b)

65. Which of the following abstract data types can be used to represent a many to many
relation:

 (a) Tree
(b) Graph

 (c) Both A and B

(d) None of the above (b)
66. When of the following in turn calls another function a process of 'chaining' occurs. A

special case of this process, where a function calls itself is called:
 (a) Recursion (b) Delection
 (c) Insertion (d) Overloading (a)

67. Which of the following is data structure operation?
 (a) Searching

(b) Sorting
 (c) Traversing

(d) All of the above (d)

68. In which tree for every node the height of its left and right sub tree differ at last by
one?

 (a) Binary search tree
(b) AVL tree

 (c) Complete Tree

(d) None of the above (d)
69. Which of the following is not a type of tree?

 (a) Binary (b) Binary Search
 (c) AVL (d) Insertion (b)

Algorithms and Data Structure 191

70. The process memory allocation at run time is known as:

 (a) Dynamic memory allocation (b) Static memory allocation
 (c) Compaction (d) fragmentation (a)
71. The collection of same type of data is called:

 (a) An array
(b) A union

 (c) A structure
(d) None of the above (a)

72. In a linear linked list, a node contains at least:

 (a) Node address field and next pointer filed
 (b) Node number and data field
 (c) An information field and next pointer field

 (d) None of the above (c)

73. Which of the following sorting algorithm is based on the idea of "Divide" and
conquer?

 (a) Merge sort

(b) Heap sort
 (c) Both B and A

(d) None of the above (d)

74. Which of the following is a method of searching?

 (a) Linear search (b) Bubble search
 (c) Insertion search (d) Selection search (a)

75. The element at the root of heap is:
 (a) Largest

(b) Smallest
 (c) Depends on type of heap

(d) None of the above (c)

.76. Average case time complexity of quick sort algorithm is:

 (a) O (n log n)
 (b) O (log2

 n)

 (c) O (n2)
 (d) None of the above (a)

192

77. The five items A B C D AND E are pushed in a stack, one after the another starting

from A. The stack is popped four times and each elements is inserted in a queue. The
two element are deleted from the queue and pushed back on the stack. Now one item is
popped from the stack. The popped items is:

 (a) A (b) B
 (c) C (d) D (d)

78. Malloc function returns a NULL when:
 (a) Memory is successfully allocated

 (b) All memory is cleared
 (c) Space is insufficient to satisfy the request

 (d) None of the above (c)

79. FRONT and REAR words are related with:

 (a) Stack
(b) Queue

 (c) Linked list
(d) None of the above (b)

80. Queue is also known as:
 (a) LIFO – system

(b) FIFO system
 (c) LIFO FIFO

(d) None of the above (b)

81. For a sequential search, the average number of comparisons for a file with records is:

 (a) (n+1)/2 (b) log2 n
 (c) n2 (d) n/2 (d)

82. A data structure, in which an element is added and removed only from one end is
known is:

 (a) Queue
(b) Stack

 (c) Array

(d) None of the above (b)

83. Header of a linked list a special node at the:
 (a) End of the linked list

(b) Middle of the list

 (c) Beginning of the list

Algorithms and Data Structure 193

(d) None of the above (c)

84. Adjacency matrix for a graph is:
 (a) Unimarix

(b) Symmetric
 (c) Asymmetric

(d) None of the above (b)

85. What is the minimum number of fields with each element of a doubly linked list?

 (a) 1
 (b) 2

 (c) 3
 (d) 4 (c)
86. Worst case complexity of quick sort algorithm is:

 (a) O (n2)
(b) O (n log n)

 (c) O (lon n)
(d) None of those (a)

87. Average case complexity of heap sort algorithm is:
 (a) O (n log n)

 (b) O (n2)
 (c) O (n)
 (d) O (n log2 n) (a)

88. Hashing or has addressing is a technique of:

 (a) Searching
(b) Sorting

 (c) Both (a) and (b)

(d) None of the above (a)

89. The notation in which operation symbol is placed before its two operands, is called:
 (a) Infix notation

(b) Polish notation

 (c) Suffix notation
(d) None of the above (b)

90. ……………….is the term used to delete an element from a stack.
 (a) PUSH (b) POP

 (c) DEL (d) Both B and C (b)

194

91. When a called function in turn calls another function a process of chaining occurs. A
special case of this process, where a function calls itself is called.

 (a) Recursion (b) Deletion

 (c) Insertion (d) Overloading (a)

92. Sparse matrices have:
 (a) Many zero elements

(b) Many non zero elements

 (c) Higher dimension
(d) None of the above (a)

93. Length of the string "Manisha" is :
 (a) 7

(b) 8
 (c) either 7 or 8

(d) None of the above (a)

94. What will be the results of insert (' ABCDEFG',3 XYZ)?

 (a) ABCDEFGXYZ
 (b) ABXYZCDEFG

 (c) ABCXYZDEFG
 (d) None of the above ()

95. The string with zero characters is called:
 (a) Empty string (b) Null string

 (c) Full string (d) Both A and B ()

96. The variables which can be accessed only within a particular program of subprogram

are known as:
 (a) Local variables

 (b) Global variable
 (c) Auto variables
 (d) External variables ()

Algorithms and Data Structure 195

KEY TERMS
abstract data type A set of data values and associated operations that are precisely specified
independent of any particular implementation.

Algorithm-

A computable set of steps to achieve a desired result.

asymptotic space complexity

When analyzing the running time or space usage of programs, we usually try to estimate the
time or space as function of the input size.

asymptotic bound

A curve representing the limit of a function. That is, the distance between a function and the

curve tends to zero. The function may or may not intersect the bounding curve.

Access vector — A list of pointers providing access to a set of data items.

Algorithm — A rule for arriving at an answer in a finite number of steps.

Ancestor — A parent of a parent (or an ancestor).

Arc — An edge on a directed graph.

Array — An elementary data structure that resembles a table; typically, one data element is
stored in each array cell and the cells are distinguished by subscripts.

Attribute — A property of an entity.

Binary tree — A special type of tree in which each node has two branches.

Branch — On a tree, a link between a parent and a child.

Child — An immediate lower- level node in a tree.

Circular linked list — A linked list in which the last node points back to the first node.

Cycle — On a graph, a path that leads from a node back to the same node.

196

Data element — An attribute that cannot be logically decomposed; the most basic unit of data

that has logical meaning.

Data structure — A way of organizing data that considers both the data items and their
relationships to each other.

Descendant — A child of a child (or a descendant).

Directed graph (digraph) — A graph on which each edge (or arc) has a direction.

Doubly linked list — A linked list in which each node contains both forward and backward

pointers.

Edge — On a graph, a link between two nodes.

Entity — An object (a person, group, place, thing, or activity) about which data are stored.

Field — A data element physically stored on some medium.

File — A set of related records.

Graph — A set of nodes (or vertexes) linked by a set of edges.

Indegree — On a directed graph, the number of arcs entering a given node.

Key — The attribute or group of attributes that uniquely distinguishes one occurrence of an

entity.

Leaf (leaf node) — On a tree, a node with no branches.

Linked list — A list in which each node contains data plus a pointer to the next node.

List — A series of nodes each of which holds a single data item; the most basic data structure.

Matrix — A two-dimensional array.

Minimum spanning tree — Within a graph, a subtree or spanning tree for which the sum of
arc weights is minimal.

Algorithms and Data Structure 197

Multi-linked list — A linked list in which each node contains two or more pointers, thus

providing access to two or more other nodes.

Multi-way tree — A tree in which each node holds n (two or more) values and can have (n +
1) branches.

Network (weighted graph) — A graph on which the edges have values.

Node — An entry in a list; often, a single data element or a single record.

Occurrence — A single instance of an entity.

Ordered list — A list in which the nodes are stored in data value or key order.

Outdegree — On a directed graph, the number of arcs exiting from a given node.

Parent — The immediate higher-level node in a tree.

Path — On a graph, a sequence of edges that links a set of nodes; on a digraph, the path’s
direction is significant.

Pointer — A link to a data item; typically, a key value or an address.

Pop — To remove an entry from the top of a stack.

Push — To add an entry to the top of a stack.

Queue — A special type of linked list in which insertions occur at the rear and deletions

occur at the front.

Record — The set of fields associated with an occurrence of an entity.

Recursion — A subroutine calling itself; a subroutine initiating a circular chain of calls that
returns eventually to itself.

Root (root node) — A tree’s top (or base) node.

Siblings — Two or more nodes that share the same level.

Singly linked list — A linked list in which each node points only to the next node.

198

Sink — On a directed graph, a node of outdegree 0.

Source — On a directed graph, a node of indegree 0.

Stack — A special type of linked list in which all insertions and deletions occur at the top.

Subtree (spanning tree) — A tree within a graph; a subset of a tree that is itself a tree.

Tree — A two-dimensional, hierarchical data structure; a tree can be defined recursively

because each node is the root node of a subtree.

Undirected graph — A graph on which the edges have no direction.

Vector — A one-dimensional array.

Algorithms and Data Structure 199

References

Data Structures and Algorithms (Addison-Wesley Series in Computer Science and
Information Pr)

2) data structure schaum series by lipschutz

3) Data Structure (Tanenbaum book)

4) Data structure by Balaguruswamy.

Source Site could give you more information :

1) http://en.wikipedia.org/wiki/D ata_s tructure

2) http://www.cplusplus.com/doc/t utori al/structures.html

