

Mr. Sachin Bagoria

Asst. Professor

Biyani's Think Tank

Concept based notes

Programming in C
BCA I Sem.

While every effort is taken to avoid errors or omissions in this Publication, any

mistake or omission that may have crept in is not intentional. It may be taken note of

that neither the publisher nor the author will be responsible for any damage or loss of

any kind arising to anyone in any manner on account of such errors and omissions.

Published by :

Think Tanks
Biyani Group of Colleges

Concept & Copyright :

Biyani Shikshan Samiti
Sector-3, Vidhyadhar Nagar,
Jaipur-302 023 (Rajasthan)

Ph : 0141-2338371, 2338591-95 Fax : 0141-2338007
E-mail : acad@biyanicolleges.org
Website :www.gurukpo.com; www.biyanicolleges.org

ISBN : 978-93-83462-22-3

Edition: 2025

Leaser Type Setted by :

Biyani College Printing Department

mailto:acad@biyanicolleges.org
http://www.gurukpo.com/
http://www.biyanicolleges.org/

Preface

I am glad to present this book, especially designed to serve the needs of

the students. The book has been written keeping in mind the general weakness
in understanding the fundamental concepts of the topics. The book is self-
explanatory and adopts the “Teach Yourself” style. It is based on question-
answer pattern. The language of book is quite easy and understandable based
on scientific approach.

Any further improvement in the contents of the book by making corrections,
omission and inclusion is keen to be achieved based on suggestions from the
readers for which the author shall be obliged.

I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr. Sanjay
Biyani, Director (Acad.) Biyani Group of Colleges, who are the backbones and
main concept provider and also have been constant source of motivation
throughout this Endeavour. They played an active role in coordinating the various
stages of this Endeavour and spearheaded the publishing work.

I look forward to receiving valuable suggestions from professors of various
educational institutions, other faculty members and students for improvement of
the quality of the book. The reader may feel free to send in their comments and
suggestions to the under mentioned address.

Author

Syllabus

UNIT- I

Basic concepts of Programming languages, Programming Domains, Language

Evaluation criteria and language categories, Evolution of major programming

languages. Describing syntax and semantics, formal methods of describing syntax,

Pseudo code, Design of Algorithm & Flowchart

UNIT-II

Fundamentals of C: History and importance of C, basic structure and execution of C

programs, constants, variables, and data types, Various type of declarations, operators

types and expressions, evaluation of expressions, operator precedence and associability.

Managing input and output operations, decision making and branching. Iteration:

while, do…while, for loop, nested loops, break & continue, go to statements.

UNIT-III

Array and String: One-dimensional array and their declaration and initialization, two-

dimensional arrays and their initializations, character arrays (One and Two

dimensional), reading and writing strings, string - handling functions. Functions: Need

and elements for user –defined functions, definition of functions, return values and

their types, function calls and declaration, recursion, parameter passing, passing arrays

and strings to functions, the scope, visibility and life time of variables.

UNIT-IV

Understanding Pointers: Accessing the address of a variable, declaration and

initialization of pointer variables, accessing a variable through its pointer, pointers and

arrays, pointers and function arguments, functions returning pointers. Structures and

Unions: Defining structure, declaring structure variable and accessing structure

members, initialization of structure, operation on individual members, and array of

structures, union, size

of structure.

Chapter 1

Introduction to Programming tit-bits

Q 1. How do we define a character set?

Ans Any alphabet ,digit or symbols to represent information is called Character .
The characters are grouped into following categories:
1 Letters

2 Digits
3 Special characters

4 White spaces
The following are the valid alphabets, numbers and special symbols

permitted in C.
Digits: From 0 to 9

Letters: From a to z, A to Z.
Special characters : , . ? „ “ / \
White space: Blank Spaces , Tab , New Line.

Q2 What are Identifiers?

Ans Identifiers" are the names that we supply for variables, types, functions, and
labels in our program. Identifier names must differ in spelling and case from
any keywords. We cannot use keywords (either C or Microsoft) as identifiers;
they are reserved for special use. We create an identifier by specifying it in the
declaration of a variable, type, or function.

Q3 Define Variables.

Ans A variable is a name given to the memory location for holding data. The name
of the memory location i.e. the variable name, remain fixed during execution
of the program but the data stored in that location may change from time to
time.

Eg. Marks1 , Marks2, abc , a , ab_1 ,
Rules for writing variable names

1. The first character of variable name must be an alphabetic.
2. Blank spaces are not allowed in a variable name.

3. Special characters such as arithmetic operators, #,^ can not be used in a
variable.

4. Reserved words(Keywords) cannot be used as variable names.

Principles of Programming languages

5. The maximum length of a variable name depends upon the compiler (8).

6. A variable name declared for one data type cannot be used to declare another
data type.

Q4 What do you mean by constants?
Ans Constant is fixed value which can not be changed by the program during the

execution.
Eg. A=5 in this 5 is constant.

Q 5. How many types of constants ?

A2. There are mainly three types of constants namely: integer, real and character
constants.

1. Integer Constants:
(i) Decimal Integer Constant:

0 to 9
E.g: 49, 58, -62, … (40000 cannot come bcoz it is >

32767)

(ii) Octal Integer Constant:
0 to 7
Add “0” before the value.

Eg.: 045, 056, 067

(iii) Hexadecimal Integer:0 to 9 and A to
F Add 0x before the value
E.g: 0x42, 0x56, 0x67

2. Real Constants:

The real or floating point constants are in two forms namely fractional form
and the exponential form.

A real constant in fractional form must have a digit with a decimal part.Ex
456.78

In exponential form, the real constant is represented as two parts. The part lying

before the „e‟ is the „mantissa‟, and the one following „e‟ is the „exponent‟.

Ex: +3.2e-4, 4.1e8, -0.2e+4, -3.2e-4
3. Character Constants

A character constant is an alphabet, a single digit or a single special symbol

enclosed within inverted commas. Ex: ‟B‟, ‟l‟, ‟#‟

Q 6.
A.ns

What are key words?
They are the reserved words that cannot be used for naming a variable. They

perform fix tasks.

Q7 Explain Instructions.
Ans C instruction are of basically three types :

1 Type declaration instruction
2 Arithmetic Instruction
3
Type Declaration Instructions

This instruction is used to declare the type of variables being used in the

program. Any variable used in the program must be declared before using it
in any statement. The type declaration statements is written at the beginning
of the main() function.
The main purpose of type declaration instruction is to declare the type of
variable C program.
For Example :
int num;
char c; // Type Declaration
float f;

main()
{

Some Statements
}

The Arithmetic Instruction
A C arithmetic instruction consists of a variable name on the left hand side of

= and constants appearing on the right hand side of = are connected by
arithmetic operators like +, -, * and /.
A C arithmetic statement could be of 3 types :

(a) Integer mode arithmetic statement : This is an arithmetic statement
which all operands are either integer or integer constants.

For Example :
int i, j, l, m;

i=i+1;
m=i* j +l;

(b) Real Mode Arithmetic Statement : These are arithmetic statement in
which all operands are either real constant or real variable.
For Example :

float si, roi, p, q ;

Principles of Programming languages

si = roi*p*q/100.0;

c) Mixed mode arithmetic statements : this is an arithmetic statement in
which some of the operands are integer and some of the operands are
real.
For Example :

int a, b, c, num ;

avg = (a + b+ c + num)/4;
Control instruction:
To control the sequence of execution of various statements in a C program.

Q8. What is Expression?

Ans Expression is any valid combination of operators, constants, functions and
variables.

Statements like a = b + 3, ++z and 300 > (8 * k) are all expressions.

Q9 Discuss various operator in C and C++.

Ans An operator is a symbol that operates on a certain data type and produces the
output as the result of the operation.

Eg. expression 4 + 5 is equal to 9. Here 4 and 5 are called operands and + is

called operator.
Category of operators
Unary Operators:-A unary operator is an operator, which operates on one

operand.

Binary:-A binary operator is an operator, which operates on two operands
Ternary:-A ternary operator is an operator, which operates on three operands.

C contains the following operator groups
1 Arithmetic Operator

The arithmetic operator is a binary operator, which requires two operands to
perform its operation of arithmetic. Following are the arithmetic operators that
are available.
Operator Description Eg.
+ Addition a+b
- Subtraction a-b

/ Division
* Multiplication

a/b
a*b

% Modulo or remainder
2 Relational Operators

a%b

Relational operators compare between two operands and return in terms of
true or false i.e. 1 or 0. In C and many other languages a true value is denoted
by the integer 1 and a false value is denoted by the integer 0. Relational
operators are used in conjunction with logical operators and conditional &
looping statements.

<Less than

> Greater than
<= Less than or equal to
>= Greater than or equal to
!= Not equal to

== Equal to

3 Logical Operators

A logical operator is used to compare or evaluate logical and relational

expressions. There are three logical operators available in the C language.
&& Logical AND
||Logical OR

!Logical NOT

4 Assignment operator

An assignment operator (=) is used to assign a constant or a value of one
variable to another.

Example:
a = 5;
b = a;

rate = 10.5
net = (a/b) * 100;

* There is always difference between the equality operator (==) and the
assignment operator (=).

5 Conditional or Ternary Operator

A conditional operator checks for an expression, which returns either a true or
a false value. If the condition evaluated is true, it returns the value of the true
section of the operator, otherwise it returns the value of the false section of the
operator.

Its general structure is as follows:
Expression1 ? expression 2 (True Section): expression3 (False
Section) Example:
a=3,b=5,c;

Principles of Programming languages

c = (a>b) ? a+b : b-a;

The variable c will have the value 2, because when the expression (a>b) is
checked, it is evaluated as false. Now because the evaluation is false, the
expression b-a is executed and the result is returned to c using the assignment
operator.

6 Bitwise Operators:

These are used to perfom bitwise operations such as testing the bits , shifting
the bits to left or right , one‟s compliment of bits. This operator can be apply

on only int and char data type.
& AND
| Inclusive OR

^ Exclusive OR

<< Shift Left >>

Shift Right

~ One's compliment
~A = 1100 0011

7 Increment and Decrement Operators

These operators are unary operators .

The increment and decrement operators are very useful in C language. They
are extensively used in for and while loops. The syntax of these operators is
given below.

++
--

8 Comma operator (,):-

The comma operator (,) is used to separate two or more expressions that are
included where only one expression is expected. When the set of expressions
has to be evaluated for a value, only the rightmost expression is considered.

Q10 What are the ways to comment statement in C?
Ans Comments are non executable statement

Most of C/C++ will support two types of comments:

// Comment text goes here (in line)
/* Comment goes here */ (block)

Q11 Input and output statements
Ans

Input :
In any programming language input means to feed some data into program.

This can be given in the form of file or from command line. C programming
language provides a set of built-in functions to read given input and feed it to
the program as per requirement.
printf() function
This is one of the most frequently used functions in C for output
Output :

In any programming language output means to display some data on screen,

printer or in any file. C programming language provides a set of built-in
functions to output required data.
scanf() function

This is the function which can be used to to read an input from the command
line.

Chapter 2

The Decision , Loop , Case Control
Structure

Q.1 Explain control structures available in C and C++.

A C provides two styles of flow
control: Branching

Looping
Branching or Decision :

Branching or Decision is so called because the program chooses to follow one
branch or another.
if statement

This is the most simple form of the branching statements.It takes an
expression in parenthesis and an statement or block of statements. if the
expression is true then the statement or block of statements gets executed
otherwise these statements are skipped.
Syntex:- if with single statement

if (expression)

statement;

Syntex:- if with block statement
if (expression)

{

Block of statements;
}

or

Syntex:- if with else statement
if (expression)

{
Block of statements;

}

else

Principles of Programming languages

{
Block of statements;

}

Or

Syntex:- if with else if statement
if (expression)

{
Block of statements;

}
else if(expression)

{

Block of statements;
}

else
{

Eg.

Block of statements;
}

#include <stdio.h>

main()
{

int cows = 6;

if (cows > 1)

printf("We have cows\n");

if (cows > 10)

printf("loads of them!\n");
else

printf("Executing else part...!\n");

if (cows == 5)
{

printf("We have 5 cows\n");

}

else if((cows == 6)

{
printf("We have 6 cows\n");

}
}

Output

We have cows

Executing else part...!
We have 6 cows

? : Operator
The ? : operator is just like an if ... else statement except that because it is an
operator you can use it within expressions.

? : is a ternary operator in that it takes three values, this is the only ternary
operator C has.

? : takes the following form:
if condition is true ? then X return value : otherwise Y
value; switch statement:

The switch statement is much like a nested if .. else statement. Its mostly a
matter of preference which you use, switch statement can be slightly more
efficient and easier to read.
switch(expression)

{
case expression1:

statements1;
case expression2:
statements2;
case c-expression3:
statements3;

default : statements4;
}

Use of break
Use If a condition is met in switch case then execution continues on into

the next case clause also if it is not explicitly specified that the execution
should exit the switch statement. This is achieved by using break keyword.
Looping
Loops provide a way to repeat commands and control how many times they
are repeated. C provides a number of looping way.

Principles of Programming languages

while loop
The most basic loop in C is the while loop. Like an If statement, if the

test condition is true, the statements get executed. The difference is that after
the statements have been executed, the test condition is checked again. If it is
still true the statements get executed again.This cycle repeats until the test
condition evaluates to false.
syntax

while (expression)
{

Single statement

or
Block of statements;

}
for loop

for loop is similar to while, it's just written differently. for statements
are often used to proccess lists such a range of numbers:
syntax:

for(expression1; expression2; expression3)
{

Single statement
or
Block of statements;

}
In the above syntax:

expression1 - Initialisese variables.

expression2 - Condtional expression, as long as this condition is true, loop will
keep executing.
expression3 - expression3 is the modifier which may be simple increment of a
variable.
do...while loop

do ... while is just like a while loop except that the test condition is
checked at the end of the loop rather than the start. This has the effect that the
content of the loop are always executed at least once.
syntax

do

{

Single statement

or
Block of statements;

}while(expression);
break and continue statements

C provides two commands to control the loop:
break -- exit form loop or switch.
continue -- skip 1 iteration of loop.

#include

main()
{

int i;

int j = 10;

for(i = 0; i <= j; i ++)

{
if(i == 5)
{

continue;
}

printf("Hello %d\n", i);

}
}
Hello 0
Hello 1

Hello 2

Hello 3
Hello 4
Hello 6
Hello 7

Hello 8

Hello 9
Hello 10

The goto statement (unconditional branching)
goto allows to make an absolute jump to another point in the program.

We should use this feature with caution since its execution causes an
unconditional jump ignoring any type of nesting limitations.

The destination point is identified by a label, which is then used as an
argument for the goto statement. A label is made of a valid identifier followed
by a colon (:).

goto loop example

Principles of Programming languages

#include <stdio.h>
int main ()
{

int n=10;
loop:
printf(“%d”, n);

n--;

if (n>0)
goto loop;
printf("FIRE”);
}
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

exit function

exit is a function defined in the cstdlib library.

The purpose of exit is to terminate the current program with a specific exit
code. Its prototype is:

exit()

Chapter 3

Functions

Q1 What is a Function?

Ans The function is a self contained block of statements which performs a task of a
same kind. C program does not execute the functions directly. It is required to
invoke or call that functions. When a function is called in a program then
program control goes to the function body. Then, it executes the statements.
We call function whenever we want to process that functions statements i.e.
more than 1 times. Any c program contains at least one function. Function is
used to avoids rewriting the same code over and over.

The following is its format:
type name (parameter1, parameter2, ...) { statements
} where:

• type is the data type specifier of the data returned by the function.
• name is the identifier by which it will be possible to call the function.

• parameters (as many as needed): Each parameter consists of a data type
specifier followed by an identifier.

• statements is the function's body. It is a block of statements surrounded by
braces { }.

Eg.

void add()
{

int a, b, c;
clrscr();
printf("\n Enter Any 2 Numbers : ");

scanf("%d %d",&a,&b);
c = a + b;

printf("\n Addition is : %d",c);
}
void main()

{
void add();
add();

getch();
}

Q2 What are the properties of functions in C? Ans
function in a C program has some properties.
1 Every function has a unique name. This name is used to call function from

“main()” function. A function can be called from within another function.

2 A function is independent and it can perform its task without intervention
from or interfering with other parts of the program.

3 A function performs a specific task. A task is a distinct job that our program
must perform as a part of its overall operation, such as adding two or more
integer.

4 A function returns a value to the calling program. This is optional and
depends upon the task your function is going to accomplish..

Q3 What are the types of functions ?
Ans There are 2(two) types of functions as:

1. Built in Functions

2. User Defined Functions

1. Built in Functions :

These functions are also called as 'library functions'. These functions are
provided by system. These functions are stored in library files. e.g.
scanf()
printf()

strcpy

2 User Defined Functions :
The functions which are created by user for program are known as 'User
defined functions'.
include <stdio.h>

#include <conio.h>

void add()

{
int a, b, c;

clrscr();

printf("\n Enter Any 2 Numbers :
"); scanf("%d %d",&a,&b);
c = a + b;

Principles of Programming languages

printf("\n Addition is : %d",c);

void main()

void add();
add();

getch();

Q4 Write Parameter passing mechanisms in C?
Ans There are two ways to pass parameters to a function:

Pass by Value: mechanism is used when you don't want to change the value

of passed paramters. When parameters are passed by value then functions in
C create copies of the passed in variables and do required processing on these
copied variables.
int main()
{

int a = 10;

int b = 20;

printf("Before: Value of a = %d and value of b = %d\n", a, b
); swap(a, b);

printf("After: Value of a = %d and value of b = %d\n", a, b);
}

void swap(int p1, int p2)

{
int t;

t = p2;
p2 = p1;

p1 = t;
printf("Value of a (p1) = %d and value of b(p2) = %d\n", p1, p2);

}

Before: Value of a = 10 and value of b = 20
Value of a (p1) = 20 and value of b(p2) = 10
After: Value of a = 10 and value of b = 20

Pass by Reference : This mechanism is used when you want a function to do
the changes in passed parameters and reflect those changes back to the calling
function. In this case only addresses of the variables are passed to a function
so that function can work directly over the addresses.

void swap(int *p1, int *p2);

int main()

{
int a = 10;

int b = 20;

printf("Before: Value of a = %d and value of b = %d\n", a, b
); swap(&a, &b);

printf("After: Value of a = %d and value of b = %d\n", a, b);
}

void swap(int *p1, int *p2)

{

int t;

t = *p2;
*p2 = *p1;
*p1 = t;

printf("Value of a (p1) = %d and value of b(p2) = %d\n", *p1, *p2);
}

before: Value of a = 10 and value of b = 20
Value of a (p1) = 20 and value of b(p2) = 10
After: Value of a = 20 and value of b = 10

Q5 Scope and lifetime of variables.
Ans

Storage
Class

Storage Default initial
value

Scope Life

Automatic Memory Garbage Local to the
block in
which
variable is
defined

Till the control

remains
within the
block in which
the variable is

Principles of Programming languages

 defined

Register CPU registers Garbage Local to the
block in
which

variable is

defined

Till the control

remains

within the
block in which
the variable is
defined

Static Memory Zero Local to the
block in
which

variable is

defined

Value of

variable
persists
between
different
function calls.

External Memory Zero Global As long as
program
execution
doesn‟t come

to end.

Chapter 4

Array

Q1. Define arrays.

Ans. A collection of variables which are all of the same type. It is a data structure,
which provides the facility to store a collection of data of same type under
single variable name. Just like the ordinary variable, the array should also be
declared properly. The declaration of array includes the type of array that is
the type of value we are going to store in it, the array name and maximum
number of elements.
Examples:

short val[200]; //declaration

val[12] = 5; //assignment

Q2. How is Array declared?
Ans Declaration & Data Types

Arrays have the same data types as variables, i.e., short, long, float etc.They
are similar to variables: they can either be declared global or local.They are
declared by the given syntax:

Datatype array_name[dimensions]={element1,element2,….,element}

Q3. Write a program for one dimensional array and two dimensional array.
Ans The declaration form of one-dimensional array is

Data_type array_name [size];
The following declares an array called „numbers‟ to hold 5 integers

and sets the first and last elements. C arrays are always indexed from 0. So the
first integer in „numbers‟ array is numbers[0] and the last is numbers[4].

int numbers [5];

numbers [0] = 1; // set first element
numbers [4] = 5; // set last element

This array contains 5 elements. Any one of these elements may be
referred to by giving the name of the array followed by the position number of
the particular element in square brackets ([]). The first element in every array
is the zeroth element. Thus, the first element of array „numbers‟ is referred to

as numbers[0], the second element of array „numbers‟ is referred to as

numbers[1], the fifth element of array „numbers‟ is referred to as numbers[4

Principles of Programming languages

], and, in general, the n-th element of array „numbers‟ is referred to as

numbers[n - 1].
Example:
#include <stdio.h>
#include <conio.h>

int main()
{

char name[7]; /* define a string of characters */
name[0] = 'A';
name[1] = 's';
name[2] = 'h';
name[3] = 'r';

name[4] = 'a';
name[5] = 'f';

name[6] = '\0'; /* Null character - end of text
*/ name[7] = „X‟;

clrscr();

printf("My name is %s\n",name);
printf("First letter is %c\n",name[0]);
printf("Fifth letter is %c\n",name[4]);
printf("Sixth letter is %c\n",name[5]);
printf("Seventh letter is %c\n",name[6]);
printf("Eight letter is %c\n",name[7]);
getch();
return 0;
}

Output

My name is Ashraf

First letter is A
Fifth letter is a
Sixth letter is f
Seventh letter is Null
Eight letter is X

Two dimensional array

Two-dimensional array are those type of array, which has finite number of
rows and finite number of columns. The declaration form of 2-dimensional
array is
Data_type Array_name [row size][column size];

Example:

#include<stidio.h>

#include<conio.h>
int main()
{

int matrix[3][3],I,j,r,c;
clrscr();
printf(“Enter the order of matrix\n”);

scanf(“%d%d”,&r,&c);
printf(“Enter the elements of 3x3 matrix\n”,r,c);
for(i=0;i<r;i++)

for(j=0;j<c;j++)
scanf(“%d”,&matrix[i][j]);

printf(“Given matrix:\n”);

for(i=0;i<r;i++)

for(j=0;j<c;j++)
printf(“%d\t”,matrix[i][j]);

printf(“\n”);
}

getch();
return 0;

}
Output
1 2 3

2 3 4

5 6 7

Q.4 Explain String.

Ans A group of characters stored in a character array. A string in C is a sequence of
zero or more characters followed by a NULL '\0' character:

String constants have double quote marks around them,. Alternatively, we
assign a string constant to a char array - either with no size specified, or you
can specify a size, but don't forget to leave a space for the null character!. Eg.
char string_2[] = "Hello";

char string_3[6] = "Hello";.

Principles of Programming languages

Chapter 5

Structure, Arrays and Union

Q1. Define a Structure with suitable program.

Ans . A structure is a user defined data type. We know that arrays can be used to
represent a group of data items that belong to the same type, such as int or
float. However we cannot use an array if we want to represent a collection of
data items of different types using a single name. A structure is a convenient
tool for handling a group of logically related data items.

The syntax of structure declaration is
struct structure_name

{
type element 1;
type element 2;
……………..

type element n;
};

In structure declaration the keyword struct appears first, this

followed by structure name. The member of structure should be enclosed
between a pair of braces and it defines one by one each ending with a
semicolon. It can also be array of structure. There is an enclosing brace at the
end of declaration and it end with a semicolon.

We can declare structure variables as follows

struct structure_name var1,var2,…..,var n;

For Example:

To store the names, roll number and total mark of a student
you can declare 3 variables. To store this data for more than one student 3
separate arrays may be declared. Another choice is to make a structure. No
memory is allocated when a structure is declared. It just defines the “form”
of the structure. When a variable is made then memory is allocated. This is

Principles of Programming languages

equivalent to saying that there's no memory for “int” , but when we declare
an integer that is. int var; only then memory is allocated. The structure for
the above-mentioned case will look like

struct student

{
int rollno;
char name[25];

float totalmark;
};

We can now declare structure variables stud1, stud2 as

follows struct student stud1,stud2;

Thus, the stud1 and stud2 are structure variables of type student. The
above structure can hold information of 2 students.

It is possible to combine the declaration of structure combination with that

of the structure variables, as shown below.

struct structure_name
{
type element 1;

type element 2;
……………..

type element n;
}var1,var2,…,varn;

The following single declaration is equivalent to the two

declaration presented in the previous example. struct student

{
int rollno;

char name[25];

float totalmark;
} stud1, stud2;

The different variable types stored in a structure are called its members. The
structure member can be accessed by using a dot (.) operator, so the dot
operator is known as structure member operator.

Example:

In the above example stud1 is a structure variable of
type student. To access the member name, we would write

stud1.name
Similarly, stud1‟s rollno and stud1‟s totalmark can be accessed by writing

stud1.rollno And
stud1.totalmark

Q 2. How is Initialization of sructure members carried out?

Ans Structure members can be initialized at declaration. This much the same

manner as the element of an array; the initial value must appear in the order
in which they will be assigned to their corresponding structure members,
enclosed in braces and separated by commas .The general form is

struct stucture_name var={val1,val2,val3…..};

Example:
#include <stdio.h>
#include<conio.h>
int main()

{
struct student

{

char *name;
int rollno;
float totalmark;

};

struct student stud1={"Ashraf",1,98};
struct student stud3= {"Rahul",3,97};
struct student stud2={"Vineeth",2,99};
clrscr();
printf("STUDENTS DETAILS:\nRoll

Principles of Programming languages

Q 3. Is it possible to creat Array of structures:?

Ans It is possible to store a structure has an array element. i.e., an array in which

each element is a structure. Just as arrays of any basic type of variable are
allowed, so are arrays of a given type of structure. Although a structure

mark:%.2f\n",stud2.rollno,stud2.name,stud2.totalmark);

mark:%.2f\n",stud3.rollno,stud3.name,stud3.totalmark);

getch();

return 0;

Output

Roll Number 1

Name Ashraf

Total Marks 98

Roll Number 3

Name Rahul,

Total Marks 97

Roll Number 2

Name Vineet

Total Marks 9

contains many different types, the compiler never gets to know this
information because it is hidden away inside a sealed structure capsule, so it
can believe that all the elements in the array have the same type, even though
that type is itself made up of lots of different types.

The declaration statement is given below.
struct struct_name

{

type element 1;
type element 2;
……………..
type element n;
}array name[size];

Example:

struct student
{
int rollno;

char name[25];
float totalmark;
} stud[100];

In this declaration stud is a 100-element array of structures.

Hence, each element of stud is a separate structure of type student. An array
of structure can be assigned initial values just as any other array. So the above
structure can hold information of 100 students.

Program:

#include <stdio.h>
#include <conio.h>
int main()

{
struct student

{

int rollno;
char name[25];
int totalmark;
}stud[100];

Principles of Programming languages

int n,i;

clrscr();

printf("Enter total number of students\n\n");
scanf("%d",&n);
for(i=0;i<n;i++)

{
printf("Enter details of %d-th student\n",i+1);

printf("Name:\n");

scanf("%s",&stud[i].name);
printf("Roll number:\n");

scanf("%d",&stud[i].rollno);
printf("Total mark:\n");
scanf("%d",&stud[i].totalmark);
}

printf("STUDENTS DETAILS:\n");
for(i=0;i<n;i++)

{
printf("\nRoll number:%d\n",stud[i].rollno);

printf("Name:%s\n",stud[i].name);

printf("Totel mark:%d\n",stud[i].totalmark); }

getch();

return 0;
}

Output will be the dynamic data entered by the user of all the students.

Q 4. Explain the functionality of union.

Ans Union is a data type with two or more member similar to structure but in

this case all the members share a common memory location. The size of
the union corresponds to the length of the largest member. Since the member
share a common location they have the same starting address.

The real purpose of unions is to prevent memory fragmentation by

arranging for a standard size for data in the memory. By having a standard
data size we can guarantee that any hole left when dynamically allocated

memory is freed will always be reusable by another instance of the same type
of union. This is a natural strategy in system programming where many
instances of different kinds of variables with a related purpose and stored
dynamically.

A union is declared in the same way as a structure.The syntax

of union declaration is
union union_name

{
type element 1;
type element 2;
……………..

type element n;

};
This declares a type template. Variables are then declared as:

union union_name x,y,z;

For example, the following code declares a union data

type called Student and a union variable called stud: union student

{
int rollno;

float totalmark;
};

union student stud;

It is possible to combine the declaration of

union combination with that of the union variables, as shown
below. union union_name

{
type element 1;
type element 2;

……………..
type element n;

}var1,var2,…,varn;

The following single declaration is equivalent to the

two declaration presented in the previous example. union student

Principles of Programming languages

clrscr();

printf(“Size of var=%d\n”,sizeof(var));

printf(“Size of a=%d\n”,sizeof(var.a));

{

int rollno;
float totalmark;

Q 5. Compare structure and Union
Union allocates the memory equal to the maximum memory requried by the
member of the union but structure allocates the memory equal to sum of the
memory allocated to its each individual members.

Example:

Structure:

{

struct testing

{

int a;

char b;

float c;

}var;

printf(“Size of b=%d\n”,sizeof(var.b));

printf(“Size of c=%d\n”,sizeof(var.c));

var.a=10;

var.b=”w”;

{

int a;

char b;

var.c=3.1422;

return 0;

}

Union:

{

Principles of Programming languages

}

Output of both these programs will be

same. The difference lies in the storage.

float c; ()

}var;

clrscr();

var.a=10;

var.b=”w”;

var.c=3.1422;

return 0;

Chapter 6

Pointers

Q 1. Explain Pointer.

Ans . A pointer refers to a memory location that contains an address.

Pointers: Operators (1)

Address Operator: &

Note: it looks identical to the bitewise AND operator but it is used in a
completely different way!Returns the address of a variable

Example: prt_v = & x;

Pointers: Operators (2)

Indirection Operator: *

Note: it looks identical to the multiplication operator but it is used in
a completely different way!

Retrieves a value from the memory location the pointer points to.

Example: *ptr_v = 77;

Pointer Declaration

A pointer must be declared and the variable type it points to must
be specified:

short *aptr; //pointer declaration

double *bptr;

Assigning an Address to a Pointer

short x = 33;

short *aptr; //pointer declaration

aptr = & x;

Each time we declare an array, we also declare implicitly a pointer to the
“zeroth” element!

Principles of Programming languages

Q 2. Write a program to pass arguments by value and by refrence.

Ans . #include <ansi_c.h>

float KE_by_val(float a, float b);

float KE_by_ref(float *a, float *b);

main()

{

float q = 3, v = 5;

float *qptr, *vptr;

qptr = &q;

vptr = &v;

printf("%f\n", KE_by_val(q,v));

printf("%f\n", KE_by_ref(&q,&v));

printf("%f\n", KE_by_ref(qptr,vptr));

}

float KE_by_val(float a, float b)

{

return(a * b);

}

float KE_by_ref(float *a, float *b)

{

return((*a) * (*b));

}

Output

15.00

15.00

15.00

()

