

Biyani's Think Tank

Concept based notes

Database Management System
BCA II Sem.

 Mr. Sachin Bagoria
Asst. Professor

Dept. of IT

 Biyani Girls College, Jaipur

While every effort is taken to avoid errors or omissions in this Publication, any

mistake or omission that may have crept in is not intentional. It may be taken note of

that neither the publisher nor the author will be responsible for any damage or loss of

any kind arising to anyone in any manner on account of such errors and omissions.

Published by :

Think Tanks
Biyani Group of Colleges

Concept & Copyright :

Biyani Shikshan Samiti
Sector-3, Vidhyadhar Nagar,
Jaipur-302 023 (Rajasthan)

Ph : 0141-2338371, 2338591-95 Fax : 0141-2338007
E-mail : acad@biyanicolleges.org
Website :www.gurukpo.com; www.biyanicolleges.org

ISBN : 978-93-83462-29-2

Edition: 2025

Leaser Type Setted by :
Biyani College Printing Department

mailto:acad@biyanicolleges.org
http://www.biyanicolleges.org/

Preface

I am glad to present this book, especially designed to serve the needs of

the students. The book has been written keeping in mind the general weakness
in understanding the fundamental concepts of the topics. The book is self-
explanatory and adopts the “Teach Yourself” style. It is based on question-
answer pattern. The language of book is quite easy and understandable based
on scientific approach.

Any further improvement in the contents of the book by making corrections,
omission and inclusion is keen to be achieved based on suggestions from the
readers for which the author shall be obliged.

I acknowledge special thanks to Mr. Rajeev Biyani, Chairman & Dr. Sanjay
Biyani, Director (Acad.) Biyani Group of Colleges, who are the backbones and
main concept provider and also have been constant source of motivation
throughout this Endeavour. They played an active role in coordinating the various
stages of this Endeavour and spearheaded the publishing work.

I look forward to receiving valuable suggestions from professors of various
educational institutions, other faculty members and students for improvement of
the quality of the book. The reader may feel free to send in their comments and
suggestions to the under mentioned address.

Author

UNIT- I

Database System Concepts & Architecture: Overview of DBMS, Basic DBMS

terminology, data base system v/s file system, Advantages and dis-advantages of

DBMS, Coded rules, data independence. Architecture of a DBMS, Schemas,

Instances, Database Languages, Database Administrator, Data Models.

UNIT-II

Data Modeling: Data modeling using the Entity Relationship Model: ER model

concepts, notation for ER diagram, mapping constraints, keys, Concepts of

Super Key, candidate key, primary key, Generalization, aggregation.

Relational Model : Concepts, Constraints, Languages, Relational database

design by ER & EER mapping, Relational algebra relational calculus. Relational

Algebra, Fundamental operations of Relational Algebra.

UNIT –III

Database Design: Functional dependencies, loss less decomposition,

Normalization : 1-NF, 2-NF,3-NF and BCNF. Transaction Management :

Transactions: Concepts, ACID Properties, States Of Transaction, Serializaibility,

Isolation, Checkpoints, Deadlock Handling.

Recovery System & Security : Failure Classifications, Recovery & Atomicity,

Log Base Recovery, Recovery with Concurrent Transactions, Introduction to

Security & Authorization.

UNIT-IV

Introduction to SQL: Characteristics of SQL, Advantages of SQL, SQL data types

and literals, Types of SQL commands, SQL operators and their procedure,

Tables, views and indexes, Queries and sub queries, Aggregate functions, insert,

update and delete operations, Joins, Unions, Intersection, Minus in SQL.

For free study notes log on: www.gurukpo.com

Chapter-1

Data and Information

Q.1 What do you mean by Data and Information?

Ans.: Data are plain facts. The word "data" is plural for "datum." When data are

processed, organized, structured or presented in a given context so as to

make them useful, they are called Information. It is not enough to have data

(such as statistics on the economy). Data themselves are fairly useless, but

when these data are interpreted and processed to determine its true meaning,

they becomes useful and can be named as Information.

Q.2 What do you mean by Database?

Ans.: Definitions of Database :

An organized body of related information.

In computing, a database can be defined as a structured collection of
records or data that is stored in a computer so that a program can
consult it to answer queries. The records retrieved in answer to queries
become information that can be used to make decisions.

An organized collection of records presented in a standardized format
searched by computers.

A collection of data organized for rapid search and retrieval by a
computer.

A collection of related data stored in one or more computerized files in
a manner that can be accessed by users or computer programs via a
database management system.

An organized collection of information, data, or citations stored in
electronic format that can be searched for specific information or
records by techniques specific to each database.

A logical collection of interrelated information, managed and stored as
a unit, usually on some form of mass-storage system such as magnetic
tape or disk.

For free study notes log on: www.gurukpo.com

Database Management System

A database is a structured format for organizing and maintaining
information that can be easily retrieved. A simple example of a
database is a table or a spreadsheet.

A database in an organized collection of computer records. The most

common type of database consists of records describing articles in

periodicals otherwise known as a periodical index.

A database collects information into an electronic file, for example a

list of customer addresses and associated orders. Each item is usually

called a ‗record‘ and the items can be sorted and accessed in many

different ways.

A set of related files that is created and managed by a Database

Management System (DBMS).

A computerized collection of information.

Integrated data files organized and stored electronically in a uniform
file structure that allows data elements to be manipulated, correlated,
or extracted to satisfy diverse analytical and reporting needs.

A collection of information stored in one central location. Many times,
this is the source from which information is pulled to display products
or information dynamically on a website.

Relational data structure used to store, query, and retrieve
information.

An organized set of data or collection of files that can be used for a
specified purpose. A collection of interrelated data stored so that it
may be accessed with user friendly dialogs.

A large amount of information stored in a computer system.

Q.3 What are the basic objectives of the Database?

Ans.: A database is a collection of interrelated data stored with minimum

redundancy to serve many users quickly and efficiently. The general objective

is to make information access easy, quick, inexpensive, and flexible for the

user. In data base design, several specific objectives can be considered as

follows:

Controlled Redundancy

Ease of Learning and Use

For free study notes log on: www.gurukpo.com

Data Independence

Most Information in Low Cost

Accuracy and Integrity

Recovery from failure

Privacy and Security

Performance

Q.4 Define the Database Management System.

Ans.: (i) A Database Management System (DBMS), or simply a Database

System (DBS), consists of :

A collection of interrelated and persistent data (usually referred
to as the Database (DB)).

A set of application programs used to access, update and
manage that data (which form the data Management System
(MS)).

ĀĀᜀĀᜀ The goal of a DBMS is to provide an environment that is both
convenient and efficient to use in :

Retrieving information from the database.

Storing information into the database.

Databases are usually designed to manage large bodies of information.
This involves :

Definition of structures for information storage (data modeling).

Provision of mechanisms for the manipulation of information
(file and systems structure, query processing).

Providing for the safety of information in the database (crash
recovery and security).

Concurrency control if the system is shared by users.

Q.5 Describe the basic components of DBMS. Why do we need DBMS.

Or

What are the Advantages of DBMS over conventional file system.

Ans.: There are four basic components of Database Management System :

Data : Raw facts which we want to feed in the computer.

For free study notes log on: www.gurukpo.com

Database Management System

Hardware : On which the data to be processed.

Software : The interface between the hardware and user, by which the
data will change into the information.

User : There are so many types of users some of them are application
programmer, endcase users and DBA.

Purpose of Database Systems :

To see why database management systems are necessary, let's look at a

typical ``File-Processing System'' supported by a conventional

operating system.

The application is a savings bank :

Savings account and customer records are kept in permanent

system files.

Application programs are written to manipulate files to perform

the following tasks :

Debit or credit an account.

Add a new account.

Find an account balance.

Generate monthly statements.

Development of the System proceeds as follows :

New application programs must be written as the need arises.

New permanent files are created as required.

but over a long period of time files may be in different formats,

and

Application programs may be in different languages.

So we can see there are problems with the Straight File-Processing

Approach :

Data Redundancy and Inconsistency :

Same information may be duplicated in several places.

For free study notes log on: www.gurukpo.com

All copies may not be updated properly.

Difficulty in Accessing Data :

May have to write a new application program to satisfy
an unusual request.

E.g. find all customers with the same postal code.

Could generate this data manually, but a long job.

Data Isolation :

Data in different files.

Data in different formats.

Difficult to write new application programs.

Multiple Users :

Want concurrency for faster response time.

Need protection for concurrent updates.

E.g. two customers withdrawing funds from the same
account at the same time - account has $500 in it, and
they withdraw $100 and $50. The result could be $350,
$400 or $450 if no protection.

Security Problems :

Every user of the system should be able to access only the
data they are permitted to see.

E.g. payroll people only handle employee records, and
cannot see customer accounts; tellers only access account
data and cannot see payroll data.

Difficult to enforce this with application programs.

Integrity Problems :

Data may be required to satisfy constraints.

E.g. no account balance below $25.00.

Again, difficult to enforce or to change constraints with
the file-processing approach.

Above all problems lead to the development of Database Management

Systems.

Advantages :

An organized and comprehensiveness of recording the result of the
firms activities.

For free study notes log on: www.gurukpo.com

Database Management System

A receiver of data to be used in meeting the information requirement
of the MIS users.

Reduced data redundancy.

Reduced updating errors and increased consistency.

Greater data integrity and independence from applications programs.

Improved data access to users through use of host and query
languages.

Improved data security.

Reduced data entry, storage, and retrieval costs.

Facilitated development of new applications program.

Standard can be enforced: Standardized stored data format is
particularly desirable as an old data to interchange or migration
(change) between the system.

Conflicting requirement can be handled.

Disadvantages :

It increases opportunity for person or groups outside the organization
to gain access to information about the firms operation.

It increases opportunity for fully training person within the
organization to misuse the data resources intentionally.

The data approach is a costly due to higher H/W and S/W
requirements.

Database systems are complex (due to data independence), difficult,
and time-consuming to design.

It is not maintain for all organizations .It is only efficient for
particularly large organizations.

Damage to database affects virtually all applications programs.

Extensive conversion costs in moving form a file-based system to a
database system.

Initial training required for all programmers and users.

Q.6 Define the Overall System Structure of Database Management System.

Ans.: Overall System Structure :

Database systems are partitioned into modules for different functions.

Some functions (e.g. file systems) may be provided by the operating

system.

For free study notes log on: www.gurukpo.com

Components include :

File Manager manages allocation of disk space and data

structures used to represent information on disk.

Database Manager : The interface between low-level data and

application programs and queries.

Query Processor translates statements in a query language into

low-level instructions the database manager understands. (May

also attempt to find an equivalent but more efficient form.)

DML Precompiler converts DML statements embedded in an

application program to normal procedure calls in a host

language. The precompiler interacts with the query processor.

DDL Compiler converts DDL statements to a set of tables

containing metadata stored in a data dictionary.

In addition, several data structures are required for physical system

implementation :

Data Files : store the database itself.

Data Dictionary : stores information about the structure of the

database. It is used heavily. Great emphasis should be placed on

developing a good design and efficient implementation of the

dictionary.

Indices : provide fast access to data items holding particular values.

For free study notes log on: www.gurukpo.com

Database Management System

 Users

Naïve

Application

Sophisticated

Database

Users Users Users Administrator

Application

Application

Database
Interface

Query

 Programs Scheme

Data Manipulation Query Data Definition

 Language Processor Language

 Precompiler Compiler

Application

Database

Programs Management

Database
Object Code System

 Manager

File

 Manager

Data Files

Disk Data

Storage Dictionary

Figure : Database System Structure
□ □ □

For free study notes log on: www.gurukpo.com

Chapter-2

Database Architecture

Q.1 What do you mean by Data Abstraction?

Ans.: The major purpose of a database system is to provide users with an abstract

view of the system. The system hides certain details of how data is stored,
created and maintained. Complexity should be hidden from the database
users, which is known as Data Abstraction.

Levels of Abstraction :

A common concept in computer science is levels (or less commonly layers) of

abstraction, where in each level represents a different model of the same

information and processes, but uses a system of expression involving a

unique set of objects and compositions that are applicable only to a particular

domain. Each relatively abstract, a "higher" level builds on a relatively

concrete, "lower" level, which tends to provide an increasingly "granular"

representation. For example, gates build on electronic circuits, binary on

gates, machine language on binary, programming language on machine

language, applications and operating systems on programming languages.

Each level is embeded, but not determined, by the level beneath it, making it

a language of description that is somewhat self-contained.

Q.2 Explain the Database Architecture with its various levels.

Ans.: Many users of database systems are 6 not deeply familiar

with computer

data structures, database developers often hide complexity through the
following levels :

For free study notes log on: www.gurukpo.com

Database Management System

End Case User‟s

Level

External Level

DBA‟s Level Conceptual Level

Application Internal

Programmers Level Level

Physical Level : The lowest level of abstraction describes how the data is

actually stored. The physical level describes complex low-level data

structures in detail.

Logical Level : The next higher level of abstraction describes what data are

stored in the database, and what relationships exist among those data. The

logical level thus describes an entire database in terms of a small number of

relatively simple structures. Although implementation of the simple

structures at the logical level may involve complex physical level structures,

the user of the logical level does not need to be aware of this complexity.

Database administrators, who must decide what information to keep in a

database, use the logical level of abstraction.

View Level : The highest level of abstraction describes only part of the entire

database. Even though the logical level uses simpler structures, complexity

For free study notes log on: www.gurukpo.com

remains because of the variety of information stored in a large database.

Many users of a database system do not need all this information; instead,

they need to access only a part of the database. The view level of abstraction

exists to simplify their interaction with the system. The system may provide

many views for the same database.

Q.3 How will you define different Database Users in Database Management

System?

Ans.: The Database Users fall into several categories :

Application Programmers are computer professionals interacting with
the system through DML calls embedded in a program written in a
host language (e.g. C, PL/1, Pascal) :

These programs are called Application Programs.

The DML Precompiler converts DML calls (prefaced by a
special character like $, #, etc.) to normal procedure calls in a
host language.

The host language compiler then generates the object code.

Some special types of programming languages combine Pascal-
like control structures with control structures for the
manipulation of a database.

These are sometimes called Fourth-Generation Languages.

They often include features which to generate forms and
display data.

Sophisticated Users interact with the system without writing
programs :

They form requests by writing queries in a database query
language.

These are submitted to a query processor that breaks a DML
statement down into instructions for the database manager
module.

Specialized Users are sophisticated users writing special database
application programs. These may be CADD systems, knowledge-based
and expert systems, complex data systems (audio/video), etc.

For free study notes log on: www.gurukpo.com

Database Management System

Naive Users are unsophisticated users who interact with the system by
using permanent application programs (e.g. automated teller
machine).

For free study notes log on: www.gurukpo.com

Chapter-3

Data Models

Q.1 Define various Data Models.

Ans.: Data Models: Data models are a collection of conceptual tools for describing

data, data relationships, data semantics and data constraints. There are three

different groups :

Object-Based Logical Models.

Record-Based Logical Models.

Physical Data Models.

We'll look at them in more detail now :

Object-Based Logical Models :

Describe data at the conceptual and view levels.

Provide fairly flexible structuring capabilities.

Allow one to specify data constraints explicitly.

Over 30 such models, including :

Entity-Relationship Model

Object-Oriented Model

Binary Model

Semantic Data Model

Info Logical Model

Functional Data Model

At this point, we'll take a closer look at the Entity-Relationship (E-R)

and Object-Oriented models.

For free study notes log on: www.gurukpo.com

Database Management System

The E-R Model : The entity-relationship model is based on a

perception of the world as consisting of a collection of basic objects

(entities) and relationships among these objects :

An entity is a distinguishable object that exists.

Each entity has associated with it a set of attributes describing

it.

E.g. number and balance for an account entity.

A relationship is an association among several entities.

E.g. A cust_acct relationship associates a customer with each

account he or she has.

The set of all entities or relationships of the same type is called

the entity set or relationship set.

Another essential element of the E-R diagram is the mapping

cardinalities, which express the number of entities to which

another entity can be associated via a relationship set.

The overall logical structure of a database can be expressed graphically

by an E-R diagram :

Rectangles: represent entity sets.

Ellipses: represent attributes.

Diamonds: represent relationships among entity sets.

Lines: link attributes to entity sets and entity sets to

relationships.

For free study notes log on: www.gurukpo.com

Acct.

street

name city number balance

Cust.
account

Figure : Entity-Relationship Model

Object-Oriented Model :

The object-oriented model is based on a collection of objects, like
the E-R model.

An object contains values stored in instance variables

within the object.

Unlike the record-oriented models, these values are
themselves objects.

Thus objects contain objects to an arbitrarily deep level of
nesting.

An object also contains bodies of code that operate on the
object.

These bodies of code are called methods.

Objects that contain the same types of values and the
same methods are grouped into classes.

A class may be viewed as a type definition for objects.

Analogy: the programming language concept of an
abstract data type.

The only way in which one object can access the data of

another object is by invoking the method of that other

object.

This is called sending a message to the object.

customer

For free study notes log on: www.gurukpo.com

Database Management System

Internal parts of the object, the instance variables and

method code, are not visible externally.

Result is two levels of data abstraction.
For example, consider an object representing a bank account.

The object contains instance variables number and

balance.

The object contains a method pay-interest which adds

interest to the balance.

Under most data models, changing the interest rate

entails changing code in application programs.

In the object-oriented model, this only entails a change

within the pay-interest method.

Unlike entities in the E-R model, each object has its own unique
identity, independent of the values it contains :

Two objects containing the same values are distinct.

Distinction is created and maintained in physical level by

assigning distinct object identifiers

Record-Based Logical Models :

Also describe data at the conceptual and view levels.

Unlike object-oriented models, they are used to

Specify overall logical structure of the database, and

Provide a higher-level description of the implementation.

Named so because the database is structured in fixed-format
records of several types.

Each record type defines a fixed number of fields, or attributes.

Each field is usually of a fixed length (this simplifies the

implementation).

Record-based models do not include a mechanism for direct

representation of code in the database.

Separate languages associated with the model are used to

express database queries and updates.

For free study notes log on: www.gurukpo.com

The three most widely-accepted models are the relational,

network, and hierarchical.

This course will concentrate on the relational model.

The network and hierarchical models are covered in

appendices in the text.

The Relational Model :

Data and relationships are represented by a collection of tables.

Each table has a number of columns with unique names, e.g.

customer, account.

Following tabler shows a sample relational database.

Figure : A Sample Relational Database.

The Network Model :

Data are represented by collections of records.

Relationships among data are represented by links.

Organization is that of an arbitrary graph.

Following figure shows a sample network database that is the

equivalent figure of the relational database.

number balance

900 55

556 10000

647 105366

801 10533

name street city number

Lowery Maple Queens 900

Shiver North Bronx 556

Shiver North Bronx 647

Hodges Sidehill Brooklyn 801

Hodges Sidehill Brooklyn 647

For free study notes log on: www.gurukpo.com

556 100000

Shiver North Bronx

Figure : Sample Network

Database c) The Hierarchical Model :

Similar to the network model.

Organization of the records is as a collection of trees, rather

than arbitrary graphs.

Following figure shows a sample hierarchical database that is

the equivalent figure of the relational database

Database Management System

Lowery Maple Queens 900 55

 647 105366

Hodges Sidehill Brooklyn 801 10533

For free study notes log on: www.gurukpo.com

BANK

Lowery

Maple

Queens

Hodges

Sidehill

Brookly

Shiver North Bronx

900 55

647 105366 801

10533

556 100000 647 105366

Figure : A Sample Hierarchical Database

The relational model does not use pointers or links, but relates records
by the values they contain. This allows a formal mathematical
foundation to be defined.

Physical Data Models :

Are used to describe data at the lowest level.

Very few models, e.g.

Unifying model

Frame memory

Q.2 Define the components of Data Models.

Ans.: A data model underlines the structure of a database and defines the
relationship between the different entities, a data model consist of three main
components.

Structures : The structure portion specifies hoe elementary data item
are grouped into layers.

For free study notes log on: www.gurukpo.com

Database Management System

Operation : The operation component provides mechanism for
inaction relation, retrieval & modification of data

Constraints : The constraint define conditions that must be met for the
data to be complete & correct. Constraints are used to control the
condition under which a particular data object may exist be altered &
do forth.

Three major types of constraints are on values depends & referential
integrity :–

Constraints Description

Values The allowable, valid values for attribute may be

States as a list, a range, type of character etc. For
Values may be 1,2 or 3 only range from 0 to 60
or be 1,2 or 3 only range from 0 to 60 or be

numeric only.

Dependencies The allowable values for attribute may depend

on it other values for the attribute may depend
on it other values. For Ex. The Employee
eligibility for overtime is depending upon

his/her other status code.

Relational Entity and relationship often have reference

Integrity
condition that must be met for e.g. there may be
existence dependencies in which for one entity

 to exist. An illustration of this is sales order, for
 an order to exist there must be a customer.

For free study notes log on: www.gurukpo.com

Q.3 Explain IMS Hierarchy in terms of DBMS?

Ans.: IMS Hierarchy : IMS (Information Management System) is a database and
transaction management system that was first introduced by IBM in 1968.
Since then, IMS has gone through many changes in adapting to new
programming tools and environments. IMS is one of two major legacy
database and transaction management subsystems from IBM that run on
mainframe MVS (now z/OS) systems. The other is CICS (Customer
information service system). It is claimed that, historically, application
programs that use either (or both) IMS or CICS services have handled and
continue to handle most of the world's banking, insurance, and order entry
transactions.

IMS consists of two major components, the IMS Database Management
System (IMS DB) and the IMS Transaction Management System (IMS TM). In
IMS DB, the data is organized into a hierarchy. The data in each level is
dependent on the data in the next higher level. The data is arranged so that its
integrity is ensured, and the storage and retrieval process is optimized. IMS
TM controls I/O (input/output) processing, provides formatting, logging,
and recovery of messages, maintains communications security, and oversees
the scheduling and execution of programs. TM uses a messaging mechanism
for queuing requests. IMS's original programming interface was DL/1 (Data
Language/1). Today, IMS applications and databases can be connected to
CICS applications and DB2 databases. Java programs can access IMS
databases and services.

□ □ □

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-4

Relational Algebra &

Relational Calculus

Q.1 Define the following terms.

Ans.: (i) Instances and Schemas :

Databases change over time.

The information in a database at a particular point in time is
called an Instance of the database.

The overall design of the database is called the database
Schema.

Analogy with programming languages :

Data type definition - Schema

Value of a variable - Instance

There are several schemas, corresponding to levels of
abstraction :

Physical Schema

Conceptual Schema

Sub-Schema (can be many)

Data Independence :

The ability to modify a scheme definition in one level without
affecting a scheme definition in a higher level is called Data

Independence.

There are two kinds :

Physical Data Independence :

The ability to modify the physical scheme without
causing application programs to be rewritten

Modifications at this level are usually to improve
performance

For free study notes log on: www.gurukpo.com

Logical Data Independence :

The ability to modify the conceptual scheme
without causing application programs to be
rewritten

Usually done when logical structure of database is
altered

Logical data independence is harder to achieve as the

application programs are usually heavily dependent on the

logical structure of the data. An analogy is made to abstract data

types in programming languages.

Data Definition Language (DDL) :

Used to specify a database scheme as a set of definitions

expressed in a DDL.

DDL statements are compiled, resulting in a set of tables stored

in a special file called a data dictionary or data directory.

The data directory contains metadata (data about data).

The storage structure and access methods used by the database

system are specified by a set of definitions in a special type of

DDL called a Data Storage and Definition language

Basic Idea : hide implementation details of the database schemes from the
users.

Data Manipulation Language (DML) :

Data Manipulation is : -

Retrieval of information from the database.

Insertion of new information into the database.

Deletion of information in the database.

Modification of information in the database.

A DML is a language which enables users to access and
manipulate data.

The goal is to provide efficient human interaction with the
system.

There are two types of DML :

Procedural : The user specifies what data is needed and
how to get it.

For free study notes log on: www.gurukpo.com

Database Management System

Nonprocedural : The user only specifies what data is
needed.

Easier for user.

May not generate code as efficient as that
produced by procedural languages.

A Query Language is a portion of a DML involving information
retrieval only. The terms DML and query language are often
used synonymously.

Q.2 What do you mean by Database Manager and explain its responsibilities

for DBMS.

Ans.: Database Manager :

The Database Manager is a Program Module which provides the
interface between the low-level data stored in the database and the
application programs and queries submitted to the system.

Databases typically require lots of storage space (gigabytes). This must
be stored on disks. Data is moved between disk and main memory
(MM) as needed.

The goal of the database system is to simplify and facilitate access to
data. Performance is important. Views provide simplification.

So the database manager module is responsible for :

Interaction with the File Manager : Storing raw data on disk
using the file system usually provided by a conventional
operating system. The database manager must translate DML
statements into low-level file system commands (for storing,
retrieving and updating data in the database).

Integrity Enforcement : Checking that updates in the database
do not violate consistency constraints (e.g. no bank account
balance below $25).

Security Enforcement : Ensuring that users only have access to
information they are permitted to see.

Backup and Recovery : Detecting failures due to power failure,
disk crash, software errors, etc., and restoring the database to its
state before the failure.

Concurrency Control : Preserving data consistency when there
are concurrent users.

For free study notes log on: www.gurukpo.com

Some small database systems may miss some of these features,
resulting in simpler database managers. (For example, no concurrency
is required on a PC running MS-DOS.) These features are necessary on
larger systems.

Q.3 Explain the concept of Relational Algebra.

Introduction :

Relational algebras received little attention until the publication of E.F.

Codd's relational model of data in 1970. Codd proposed such an algebra as a

basis for database query languages. The first query language to be based on

Codd's algebra was ISBL, and this pioneering work has been acclaimed by

many authorities as having shown the way to make Codd's idea into a useful

language. Business System 12 was a short-lived industry-strength relational

DBMS that followed the ISBL example. In 1998 Chris Date and Hugh Darwen

proposed a language called Tutorial D intended for use in teaching relational

database theory, and its query language also draws on ISBL's ideas. Rel is an

implementation of Tutorial D. Even the query language of SQL is loosely

based on a relational algebra, though the operands in SQL (tables) are not

exactly relations and several useful theorems about the relational algebra do

not hold in the SQL counterpart (arguably to the detriment of optimisers

and/or users).

Because a relation is interpreted as the extension of some predicate, each

operator of a relational algebra has a counterpart in predicate calculus. For

example, the natural join is a counterpart of logical AND (). If relations R and

S represent the extensions of predicates p1 and p2, respectively, then the

natural join of R and S (R S) is a relation representing the extension of the

predicate p1 p2.

It is important to realise that Codd's algebra is not in fact complete with

respect to first-order logic. Had it been so, certain insurmountable

computational difficulties would have arisen for any implementation of it. To

overcome these difficulties, he restricted the operands to finite relations only

and also proposed restricted support for negation (NOT) and disjunction

(OR). Analogous restrictions are found in many other logic-based computer

languages. Codd defined the term relational completeness to refer to a

language that is complete with respect to first-order predicate calculus apart

from the restrictions he proposed. In practice the restrictions have no adverse

effect on the applicability of his relational algebra for database purposes.

For free study notes log on: www.gurukpo.com

Database Management System

As in any algebra, some operators are primitive and the others, being

definable in terms of the primitive ones, are derived. It is useful if the choice

of primitive operators parallels the usual choice of primitive logical operators.

Although it is well known that the usual choice in logic of AND, OR and

NOT is somewhat arbitrary, Codd made a similar arbitrary choice for his

algebra.

The six primitive operators of Codd's algebra are the selection, the projection,

the Cartesian product (also called the cross product or cross join), the set union,

the set difference, and the rename. (Actually, Codd omitted the rename, but the

compelling case for its inclusion was shown by the inventors of ISBL.) These

six operators are fundamental in the sense that none of them can be omitted

without losing expressive power. Many other operators have been defined in

terms of these six. Among the most important are set intersection, division,

and the natural join. In fact ISBL made a compelling case for replacing the

Cartesian product by the natural join, of which the Cartesian product is a

degenerate case.

Altogether, the operators of relational algebra have identical expressive

power to that of domain relational calculus or tuple relational calculus.

However, for the reasons given in the Introduction above, relational algebra

has strictly less expressive power than that of first-order predicate calculus

without function symbols. Relational algebra actually corresponds to a subset

of first-order logic that is Horn clauses without recursion and negation.

The Relational Algebra is a procedural query language.

Six fundamental operations :

Unary

Select

Project

Rename

Binary

Cartesian product

Union

Set-difference

Several other operations, defined in terms of the fundamental

operations :

For free study notes log on: www.gurukpo.com

Operations produce a new relation as a result.

There are some relations which we are using in our queries :

Account

(ii) Branch

Set-intersection

Natural join

Division

Assignment

account_number branch_name balance

A-101 Downtown 500

A-102 SFU 400

A-201 Brighton 900

A-215 Mianus 700

A-217 Brighton 750

A-222 Laugheed Mall 700

A-305 Round Hill 350

branch_name branch-city assets

Brighton Brooklyn 7100000

Downtown Vaneouver 9000000

Mianus Horseneck 400000

North Town Rye 3700000

SFU Burnaby 1700000

Pownal Bennington 300000

Lougheed Mall Burnaby 2100000

Round Hill Horseneck 8000000

(iii) Customer

customer_name customer_street customer_city

Adams Spring Pittsfield

Brooks Senator Brooklyn

Curry North Rye

For free study notes log on: www.gurukpo.com

(iv) Depositor

(v) Loan

Database Management System

Glenn Sand Hill Woodside

Green Walnut Stamford

customer_name customer_street customer_city

Hayes Main Harrison

Johnson Alma PaloAlto

Jones Main Harrison

Lindsay Park Pittsfield

Smith North Rye

Turner Putnam Stamford

Williams Nassau Princeton

customer-name account-number

Hayes A-102

Johnson A-101

Johnson A-201

Jones A-217

Lindsay A-222

Smith A-215

Turner A-305

Loan_number branch_name amount

L-11 Round Hill 900

L-14 Downton 1500

L-15 SFU 1500

L-16 SFU 1300

L-17 Downtown 1000

L-23 Laugheed Mall 2000

L-93 Mianus 500

(vi) Borrower

For free study notes log on: www.gurukpo.com

bname loan# ename amount

Downtown 17 Jones 1000

Lougheed 23 Smith 2000
Mall

SFU 15 Hayes 1500

bname assets bcity

Downtown 9,00,000 Vaneouver

Lougheed 21,000,000 Burnaby
Mall

SFU 17,000,000 Burnaby

customer_name loan-number

Adams L-16

Curry L-93

Hayes L-15

Jackson L-14

Jones L-17

Smith L-11

Smith L-23

Williams L-17

Fundamental Operations :

The Select Operation :

Select selects tuples that satisfy a given predicate. Select is denoted by

a lowercase Greek sigma (), with the predicate appearing as a

subscript. The argument relation is given in parentheses following the

.

For example, to select tuples (rows) of the borrow relation where the

branch is ``SFU'', we would write

bname = “SFU”(borrow)

Let Figure be the borrow and branch relations in the banking example :

Figure : The borrow and branch Relations

The new relation created as the result of this operation consists of one
tuple :

(SFU, 15, Hayes, 1500)

For free study notes log on: www.gurukpo.com

Database Management System

We allow comparisons using =, ≠, <, ≤, > and ≥ in the selection
predicate.

We also allow the logical connectives (or) and (and). For example :

bname = “Downtown” amount > 1200(borrow)

ename banker

Hayes Jones

Johnson Johnson

Figure : The client Relation

Suppose there is one more relation, client, shown in Figure, with the

scheme

Client_scheme = (ename, banker)

we might write

ename = banker(client)

to find clients who have the same name as their banker.

The Project Operation :

Project copies its argument relation for the specified attributes only.

Since a relation is a set, duplicate rows are eliminated.

Projection is denoted by the Greek capital letter pi (). The attributes to

be copied appear as subscripts.

For example, to obtain a relation showing customers and branches, but

ignoring amount and loan#, we write

∏bname, ename(borrow)

We can perform these operations on the relations resulting from other

operations.

To get the names of customers having the same name as their bankers,

∏ename(ename = banker(client))

Think of select as taking rows of a relation, and project as taking
columns of a relation.

The Cartesian Product Operation :

The Cartesian Product of two relations is denoted by a cross (x),
written

r1 x r2 for relations r1 and r2

For free study notes log on: www.gurukpo.com

The result of r1 x r2 is a new relation with a tuple for each possible
pairing of tuples from r1 and r2.

In order to avoid ambiguity, the attribute names have attached to them
the name of the relation from which they came. If no ambiguity will
result, we drop the relation name.

The result client x customer is a very large relation. If r1 has n1 tuples,
and r2 has n2 tuples, then r = r1 x r2 will have n1n2 tuples.

The resulting schema is the concatenation of the schemas of r1 and r2,
with relation names added as mentioned.

To find the clients of banker Johnson and the city in which they live,
we need information in both client and customer relations. We can get
this by writing

banker = “Johnson”(client x customer)

However, the customer. name column contains customers of bankers
other than Johnson. (Why?)

We want rows where client. name = customer. name. So we can write

client . ename = customer . ename(banker = “Johnson”(client x

customer))

to get just these tuples.

Finally, to get just the customer's name and city, we need a projection :

∏client . ename , ecity (client . ename = customer . ename(banker = “Johnson”(client x

customer)))

The Rename Operation :

The Rename Operation solves the problems that occurs with naming
when performing the Cartesian Product of a relation with itself.

Suppose we want to find the names of all the customers who live on
the same street and in the same city as Smith.

We can get the street and city of Smith by writing

∏street , ecity (ename = “Smith”(customer))

To find other customers with the same information, we need to
reference the customer relation again :

p(customer x (∏street , ecity (ename = “Smith”(customer))))

For free study notes log on: www.gurukpo.com

using, the ambiguities will disappear.

∏customer . ename (cust2 . street = customer . street cust2 . ecity = customer . ecity

(customer x (∏street , ecity (ename = “Smith”(ρcust2(customer)))))

The Union Operation :

The Union Operation is denoted by as in set theory. It returns the

union (set union) of two compatible relations.

For a union operation r U s to be legal, we require that

or and s must have the same number of attributes.

oThe domains of the corresponding attributes must be the same.

To find all customers of the SFU branch, we must find everyone who

has a loan or an account or both at the branch.

We need both borrow and deposit relations for this:

∏ename(balance = “SFU”(borrow)) U ∏ename(bname = “SFU”(deposit))

As in all set operations, duplicates are eliminated, giving the relation
of Figure.

Database Management System

where P is a selection predicate requiring street and ecity values to be
equal.

Problem: how do we distinguish between the two street values
appearing in the Cartesian product, as both come from a customer
relation?

Solution: use the rename operator, denoted by the Greek letter rho (ρ).

We write ρz(r)

to get the relation r under the name of z.

If we use this to rename one of the two customer relations we are

(a) ename (b) ename

Hayes

Adams

Adams

Figure : The union and set-difference operations

The Set Difference Operation

Set difference is denoted by the minus sign (―). It finds tuples that are

in one relation, but not in another.

For free study notes log on: www.gurukpo.com

Find a relation r containing the balances not the largest.

Compute the set difference of r and the deposit relation. To

find r, we write

∏deposit . balance (deposit . balance < d. balance (deposit x ρd(deposit)))

This resulting relation contains all balances except the largest one.

Now we can finish our query by taking the set difference:

∏balance(deposit) ― ∏deposit . balance (deposit . balance < d. balance (deposit x

ρd(deposit)))

Figure shows the result.

(a) (b)

Figure 1 : Find the largest account balance in the bank

Formal Definition of Relational Algebra :

balance

400

500

700

balance

1300

900

Thus r ― s results in a relation containing tuples that are in r but not in

s

To find customers of the SFU branch who have an account there but no

loan, we write

∏ename(balance = “SFU”(deposit)) ― ∏ename(bname = “SFU”(borrow))

We can do more with this operation. Suppose we want to find the

largest account balance in the bank.

Strategy :

A basic expression consists of either

oA relation in the database.

oA constant relation.

General expressions are formed out of smaller subexpressions using

o P(E1) select (p a predicate)

o∏S(E1) project (s a list of attributes)

oρZ(E1) rename (x a relation name)

For free study notes log on: www.gurukpo.com

Database Management System

E1 U E2 union

E1 ― E2 set difference

E1 x E2 Cartesian product

Additional Operations :

Additional operations are defined in terms of the fundamental
operations. They do not add power to the algebra, but are useful to
simplify common queries.

The Set Intersection Operation

Set intersection is denoted by , and returns a relation that contains
tuples that are in both of its argument relations.

It does not add any power as

r ∩ s = r ― (r ― s)

To find all customers having both a loan and an account at the SFU
branch, we write

∏ename(bname = “SFU”(borrow)) ∩ ∏ename(bname = “SFU”(deposit))

The Natural Join Operation :

Often we want to simplify queries on a Cartesian product.

For example, to find all customers having a loan at the bank and the

cities in which they live, we need borrow and customer relations :

∏borrow . ename , ecity (borrow . ename = customer . ename (borrow x customer))

Our selection predicate obtains only those tuples pertaining to only

one cname.

This type of operation is very common, so we have the natural join,

denoted by a x sign. Natural join combines a cartesian product and a

selection into one operation. It performs a selection forcing equality on

those attributes that appear in both relation schemas. Duplicates are

removed as in all relation operations.

To illustrate, we can rewrite the previous query as

ename , ecity (borrow x customer))

The resulting relation is shown in Figure.

ename ecity

Smith Burnaby

For free study notes log on: www.gurukpo.com

Hayes Burnaby

Jones Vancouver

Figure : Joining borrow and customer relations

We can now make a more formal definition of natural join.

Consider R and S to be sets of attributes.

We denote attributes appearing in both relations by R ∩ S.

oWe denote attributes in either or both relations by R U S.

oConsider two relations r(R) and s(S).

The natural join of r and s, denoted by r x s is a relation on
scheme R U S.

It is a projection onto R U S of a selection on r x s where the
predicate requires r . A = s . A for each attribute A in R ∩ S.

Formally,

r x s = ∏R U S(r.A1 = s.A1 r.A2 = s.A2 r.An = s.An (r x s))

where R ∩ S = { A1 , A2 , ____ , An }

To find the assets and names of all branches which have depositors
living in Stamford, we need customer, deposit and branch relations :

∏bname , assets(ecity = “Stamford” (customer x deposit x branch))

Note that x is associative.

To find all customers who have both an account and a loan at the SFU
branch:

∏ename (bname = “SFU” (borrow x deposit))

This is equivalent to the set intersection version we wrote earlier. We

see now that there can be several ways to write a query in the

relational algebra.

If two relations r(R) and s(S) have no attributes in common, then R ∩ S

= 0, and r x s = s x r.

The Division Operation :

Division, denoted by ÷, is suited to queries that include the phrase ``for

all‖.

Suppose we want to find all the customers who have an account at all

branches located in Brooklyn.

For free study notes log on: www.gurukpo.com

Database Management System

Strategy: think of it as three steps.

We can obtain the names of all branches located in Brooklyn by

r1 = ∏bname (bcity = “Brooklyn” (branch))

We can also find all cname, bname pairs for which the customer has an
account by

r2 = ∏ename , bname(deposit)

Now we need to find all customers who appear in r2 with every branch
name in r1.

The divide operation provides exactly those customers:

∏ename , bname(deposit) ÷ ∏bname (bcity = “Brooklyn” (branch))

which is simply r2 ÷ r1.

Formally,

Let r(R) and s(S) be relations.

o Let S R.

The relation r ÷ s is a relation on scheme R - S.

A tuple is in r ÷ s if for every tuple ts in s there is a tuple tr in r

satisfying both of the following:

tr[S] = ts[S]

tr[R - S] = ts[R - S]

These conditions say that the R - S portion of a tuple is in r ÷ s

if and only if there are tuples with the r - s portion and the S

portion in r for every value of the S portion in relation S.

The division operation can be defined in terms of the fundamental

operations.

÷ s = ∏R -S(r) - ∏R -S(∏R -S(r) x s) – r)

The Assignment Operation

Sometimes it is useful to be able to write a relational algebra
expression in parts using a temporary relation variable (as we did with
r1 and r2 in the division example).

For free study notes log on: www.gurukpo.com

The assignment operation, denoted , works like assignment in a
programming language.

We could rewrite our division definition as

temp ← ∏R -S(r)

temp ← ∏R -S((temp x s) – r)

No extra relation is added to the database, but the relation variable
created can be used in subsequent expressions. Assignment to a
permanent relation would constitute a modification to the database.

Q.4 Explain the term Relational Calculus in DBMS.

Ans.: The Tuple Relational Calculus :

The tuple relational calculus is a nonprocedural language. (The
relational algebra was procedural.)

We must provide a formal description of the information desired.

A query in the tuple relational calculus is expressed as

{ t │ P(t) }

i.e. the set of tuples t for which predicate P is true.

We also use the notation

ot[a] to indicate the value of tuple t on attribute a.

t Є r to show that tuple t is in relation r.

Example Queries

For example, to find the branch-name, loan number, customer name and
amount for loans over $1200:

{ t │ t Є borrow t[amount] > 1200 }

This gives us all attributes, but suppose we only want the customer names.
(We would use project in the algebra.)

We need to write an expression for a relation on scheme (cname).

{ t │ t Є borrow (t[ename] = s[ename] s[amount] > 1200)}

In English, we may read this equation as ``the set of all tuples t such that
there exists a tuple in the relation borrow for which the values of t and s for
the cname attribute are equal, and the value of s for the amount attribute is
greater than 1200.''

For free study notes log on: www.gurukpo.com

Database Management System

The notation t Є r(Q(t)) means ``there exists a tuple t in relation r such that
predicate Q(t) is true''.

How did we get the above expression? We needed tuples on scheme cname
such that there were tuples in borrow pertaining to that customer name with
amount attribute > 1200.

The tuples get the scheme cname implicitly as that is the only attribute is
mentioned with.

Let's look at a more complex example.

Find all customers having a loan from the SFU branch, and the the cities in
which they live:

{ t │ t Є borrow (t[ename] = s[ename] s[amount] = “SFU”)}

{ u Є customer (u[ename] = s[ename] t[ecity] = u[ecity])}

In English, we might read this as ``the set of all (cname,ccity) tuples for which

cname is a borrower at the SFU branch, and ccity is the city of cname''.

Tuple variable s ensures that the customer is a borrower at the SFU branch.

Tuple variable u is restricted to pertain to the same customer as s, and also

ensures that ccity is the city of the customer.

The logical connectives (AND) and (OR) are allowed, as well as

(negation).

We also use the existential quantifier and the universal quantifier .

Some more examples :

Find all customers having a loan, an account, or both at the SFU branch

:

{ t │ t Є borrow (t[ename] = s[ename] s[bname] = “SFU”)}

{ u Є deposit (t[ename] = u[ename] u[bname] = “SFU”)}

Note the use of the connective.

As usual, set operations remove all duplicates.

Find all customers who have both a loan and an account at the SFU

branch.

Solution: simply change the connective in 1 to a .

Find customers who have an account, but not a loan at the SFU branch.

For free study notes log on: www.gurukpo.com

{ t │ u t Є deposit (t[ename] = u[ename] u[bname] = “SFU”)}

{ A ― s Є borrow (t[ename] = s[ename] s[bname] = “SFU”)}

Find all customers who have an account at all branches located in

Brooklyn. (We used division in relational algebra.)

For this example we will use implication, denoted by a pointing finger

in the text, but by here.

The formula P

true.

Q means P implies Q, or, if P is true, then Q must be

{ t │ u Є brach (u[city] = “Brooklyn”

(s Є deposit (t[ename] = s[ename] u[bname] = s[bname]))}

In English: the set of all cname tuples t such that for all tuples u in the

branch relation, if the value of u on attribute bcity is Brooklyn, then the

customer has an account at the branch whose name appears in the

bname attribute of u.

Formal Definitions :

A tuple relational calculus expression is of the form

{ t │ P(t) }

where P is a formula.

Several tuple variables may appear in a formula.

A tuple variable is said to be a free variable unless it is quantified by a

or . Then it is said to be a bound variable.

A formula is built of atoms. An atom is one of the following forms:

os Є r, where is a tuple variable, and r is a relation (is not allowed).

o s[x] u[y], where and are tuple variables, and

attributes, and is a comparison operator (<, , =,

x and y are

,>,).

o s[x] c, where is a constant in the domain of attribute x.

Formulae are built up from atoms using the following rules :

oAn atom is a formula.

For free study notes log on: www.gurukpo.com

Database Management System

o If P is a formula, then so are P and (P).

o If P1 and P2 and are formulae, then so are P1 P2, P1 V P2 and P1

 P2.

If P(s) is a formula containing a free tuple variable s, then

s Є r(P(s)) and s Є r(P(s)) are formulae also.

Note some equivalences : -

o P1 P2= (P1 V P2)

o t Є r(P(t)) = t Є r(P(t))

o P1 => P2= P1 V P2

The Domain Relational Calculus :

Domain variables take on values from an attribute's domain, rather than

values for an entire tuple. Formal Definitions

An expression is of the form

{ < x1, x2 , . . . , xn > │ P (x1, x2 , . . . , xn)}

where the xi1 1 i n1 represent domain variables, and P is a

formula.

An atom in the domain relational calculus is of the following forms

< x1, x2 , . . . , xn > Є r where r is a relation on n attributes, and xi1

1 i n1, are domain variables or constants.

o x y, where x and y are domain variables, and is a

comparison operator.

x c, where c is a constant.

Formulae are built up from atoms using the following rules :

An atom is a formula.

o If is a formula, then so are P and (P).

o If P1 and P2 are formulae, then so are P1 P2, P1 V P2 and P1

P2.

o If P(x) is a formula where x is a domain variable, then so are x

(P(x)) and x P(x)) .

For free study notes log on: www.gurukpo.com

Example Queries :

Find branch name, loan number, customer name and amount for loans

of over $1200.

{ < b1 I1 c1 a > │ b1 I1 c1 a Є borrow a > 1200 }

Find all customers who have a loan for an amount > than $1200.

{ < c > │ b1 I1 a (< b1 I1 c1 a > Є borrow a > 1200)}

Find all customers having a loan from the SFU branch, and the city in
which they live.

{ < c1 x > │ b1 I1 a (< b1 I1 c1 a > Є borrow

b = “SFU” > y (c1 y1 x > Є customer))}

Find all customers having a loan, an account or both at the SFU branch.

{ < c > │ b1 I1 a (< b1 I1 c1 a > Є borrow b = “SFU”)

V b1 a1 n (< b1 a1 c1 a > Є deposit b = “SFU”)}

Find all customers who have an account at all branches located in
Brooklyn.

{ < c > │ x1 y1 z ((< x1 y1 z > Є branch)

z ”Brooklyn” b1 a1 n (a1 n (< x1 a1 c1 n > Є deposit)))}

If you find this example difficult to understand, try rewriting this
expression using implication, as in the tuple relational calculus
example. Here's my attempt:

{ < cn > │ bn1 as1 bc ((< bn1 as1 bc > Є branch)

bc ”Brooklyn”) => an1 ba (< cn1 an1 ba1 bn > Є deposit)))}

I've used two letter variable names to get away from the problem of
having to remember what x stands for.

□ □ □

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-5

Concept of Network

Q.1 Explain the concept of Network Model with its implementation.

Ans.: The Network Model :

The network data model was formalized in the late 1960s by the Database

Task Group of the Conference on Data System Language (DBTG/

CODASYL). Their first report, which has been, revised a number of times,

contained detailed specifications for the network data model (a model

conforming to these specifications is also known as the DBTG data model).

The specifications contained in the report and its subsequent revisions have

been subjected to much debate and criticism. Many of the current database

applications have been built on commercial DBMS systems using the DBTG

model.

Implementation of the Network Data Model :

The record is a basic unit to represent data in the DBTG network database

model. The implementation of the one-to-many relationships of a set is

represented by linking the members of a given occurrence of a set to the

owner record occurrence. The actual method of linking the member record

occurrence to the owner is immaterial to the user of the database; however,

here, we can assume that the set is implemented using a linked list. The list

starts at the owner record occurrence and links all the member record

occurrences with the pointer in the last member record occurrence leading

back to the owner record. Note that for simplicity we have shown only one of

the record fields of each record. This method of implementation assigns one

pointer (link) in each record for each set type in which the record participates

and, therefore, allows a record occurrence to participate in only one

occurrence of a given set type. Any other method of implementing the set

construct in a database management system based on the DBTG proposal is,

in effect, equivalent to the linked list method.

For free study notes log on: www.gurukpo.com

50

A second form of network implementation, especially useful for M:N

relationships, is a bit map. A bit map is a matrix created for each relationship.

Each row corresponds to the relative record number of a target record of a

relationship. A 1 bit in a cell for row X and column Y means that the records

corresponding to row X and column Y are associated in this relationship; a

zero means no association. For example, the PRODUCT with relative record

number X is related to VENDOR with relative record numbers 1 and Y (and

possibly others not shown). Bit maps are powerful data structures for the

following reasons -

Any record type(s) can be included in rows or columns.

1:1, 1:M, and M:1 relationships can all be represented.

Rows and columns can be logically manipulated by Boolean operators
("and," "or," "not") to determine records that satisfy complex associations
(e.g., any record that has both parent S and parent T).

A bit map can be manipulated equally as well in either a row or column
access (all the row records for a common column or all the column
records for a common row) and can be easily extended for n-ary
relationships).

Q.2 Define DBTG Network Model.

Ans.: DBTG Model :

The DBTG model uses two different data structures to represent the database

entities and relationships between the entities, namely record type and set

type. A record type is used to represent an entity type. It is made up of a

number of data items that represent the attributes of the entity.

A set is used to represent a directed relationship between two record types,

the so-called owner record type, and the member record type. The set type,

like the record type, is named and specifies that there is a one-to-many

relationship (I:M) between the owner and member record types. The set type

can have more than one record type as its member, but only one record type

is allowed to be the owner in a given set type. A database could have one or

more occurrences of each of its record and set types. An occurrence of a set

type consists of an occurrence of the owner record type and any number of

occurrences of each of its member record types. A record type cannot be a

member of two distinct occurrences of the same owner set type.

For free study notes log on: www.gurukpo.com

Database Management System

Bachman introduced a graphical means called a data structure diagram to

denote the logical relationship implied by the set. Here a labeled rectangle

represents the corresponding entity or record type. An arrow that connects

two labeled rectangles represents a set type. The arrow direction is from the

owner record type to the member record type. Figure shows two record types

(DEPARTMENT and EMPLOYEE) and the set type DEPT-EMP, with

DEPARTMENT as the owner record type and EMPLOYEE as the member

record type.

Fig. : Key Constraint on Manages

The data structure diagrams have been extended to include field names in the

record type rectangle, and the arrow is used to clearly identify the data fields

involved in the set association. A one-to-many (1:M) relationship is shown by

a set arrow that starts from the owner field in the owner record type. The

arrow points to the member field within the member record type. The fields

that support the relationship can be clearly identified.

Q. 3. How can we convert an E-R diagram into a network database.

Ans. Each entity type in an E-R diagram is represented by a logical record type

with the same name. The attributes of the entity are represented by data fields

of the record. We use the term logical record to indicate that the actual

implementation may be quite different.

The conversion of the E-R diagram into a network database consists of

converting each 1:M binary relationship into a set (a 1:1 binary relationship

being a special case of a 1:M relationship). If there is a 1:M binary relationship

R1 from entity type E1 to entity type E2,

then the binary relationship is represented by a set An instance of this would

be S1 with an instance of the record type corresponding to entity E1 as the

For free study notes log on: www.gurukpo.com

owner and one or more instances of the record type corresponding to entity

E2 as the member. If a relationship has attributes, unless the attributes can be

assigned to the member record type, they have to be maintained in a separate

logical record type created for this purpose. The introduction of this

additional record type requires that the original set be converted into two

symmetrical sets, with the record corresponding to the attributes of the

relationship as the member in both the sets and the records corresponding to

the entities as the owners.

Each many-to-many relationship is handled by introducing a new record type

to represent the relationship wherein the attributes, if any, of the relationship

are stored. We then create two symmetrical 1:M sets with the member in each

of the sets being the newly introduced record type.

In the network model, the relationships as well as the navigation through the

database are predefined at database creation time.

Q.4 What do you mean by Database Administrator and explain its duties? Also

define DBA Schema.

Ans.: Database Administrator :

The Database Administrator is a person having central control over data and

programs accessing that data. Duties of the database administrator include :

Schema Definition : the creation of the original database scheme. This

involves writing a set of definitions in a DDL (data storage and

definition language), compiled by the DDL compiler into a set of tables

stored in the data dictionary.

Storage Structure and Access Method Definition : writing a set of

definitions translated by the data storage and definition language

compiler

Scheme and Physical Organization Modification : writing a set of

definitions used by the DDL compiler to generate modifications to

appropriate internal system tables (e.g. data dictionary). This is done

rarely, but sometimes the database scheme or physical organization

must be modified.

Granting of Authorization for Data Access : granting different types

of authorization for data access to various users

For free study notes log on: www.gurukpo.com

Database Management System

Integrity Constraint Specification : generating integrity constraints.

These are consulted by the database manager module whenever

updates occur.

Q.5 What are the Responsibilities or Functions of Database Administrator?

Ans.: A Database Administrator (DBA) is a person who is responsible for the

environmental aspects of database. In general, these include :

Recoverability : Creating and testing Backups.

Integrity : Verifying or helping to verify data integrity.

Security : Defining and/or implementing access controls to the data.

Availability : Ensuring maximum uptime.

Performance - Ensuring maximum performance.

Development and Testing Support : Helping programmers and engineers to

efficiently utilize the database.

The role of a database administrator has changed according to the technology

of database management systems (DBMSs) as well as the needs of the owners

of the databases. For example, although logical and physical database design

are traditionally the duties of a Database Analyst or Database Designer, a

DBA may be tasked to perform those duties.

□ □ □

For free study notes log on: www.gurukpo.com

Chapter-6

Types of Databases

Q.1 Define ORDBMS and OODBMS.

Ans.: An Object-Relational Database (ORD) or Object-Relational Database

Management System (ORDBMS) is a database management system similar
to a relational database, but with an object-oriented database model: objects,
classes and inheritance are directly supported in database schemas and in the
query language. In addition, it supports extension of the data model with
custom data-types and methods.

One aim for this type of system is to bridge the gap between conceptual
datamodeling techniques such as ERD and ORM, which often use classes and
inheritance, and relational databases, which do not directly support them.

Another, related, aim is to bridge the gap between relational databases and

the object-oriented modeling techniques used in programming languages

such as Java, C++ or C#. However, a more popular alternative for achieving

such a bridge is to use a standard relational database systems with some form

of object-relational mapping software.

Whereas traditional RDBMS or SQL-DBMS products focused on the efficient
management of data drawn from a limited set of data-types (defined by the
relevant language standards), an object-relational DBMS allows software-
developers to integrate their own types and the methods that apply to them
into the DBMS. ORDBMS technology aims to allow developers to raise the
level of abstraction at which they view the problem domain. This goal is not
universally shared; proponents of relational databases often argue that object-
oriented specification lowers the abstraction level.

An object-relational database can be said to provide a middle ground
between relational databases and object-oriented databases (OODBMS). In
object-relational databases, the approach is essentially that of relational
databases: the data resides in the database and is manipulated collectively
with queries in a query language; at the other extreme are OODBMSes in
which the database is essentially a persistent object store for software written

For free study notes log on: www.gurukpo.com

Database Management System

in an object-oriented programming language, with a programming API for
storing and retrieving objects, and little or no specific support for querying.

Many SQL ORDBMSs on the market today are extensible with user-defined
types (UDT) and custom-written functions (e.g. stored procedures. Some (e.g.
SQL Server) allow such functions to be written in object-oriented
programming languages, but this by itself doesn't make them object-oriented
databases; in an object-oriented database, object orientation is a feature of the
data model.

Q.2 What are the fundamental characteristics of Distributed Databases?

Ans.: DDBMS have following characteristics :

A collection of logically related shared data.

The data is split into number of fragments.

Fragments may be replicated.

Fragments/replicas are allocated to sites.

The sites are linked with computer network.

The data at each site is under the control of a DBMS.

The DBMS at each site can handle local applications autonomously.

Each DBMS participates in at least one global application.

It is not necessary for every site in the system to have its own local
database as shown.

The system is expected to make the distribution transparent to the
user.

Distributed database is split into fragments that can be stored on
different computers and perhaps replicated.

The objective of the transparency is to make the distributed system to
appear like a centralized system.

The system consists of data that is physically distributed across the
network. If the data is centralized, even though the users may be
accessing the data over the network, it is not considered as distributed
DBMS, simply distributed processing.

Q.3 Write the different advantages and disadvantages of DDBMS.

Ans.: Advantages :

For free study notes log on: www.gurukpo.com

Reflects organizational structure

Improved sharability and local autonomy

Improved availability

Improved reliability

Improved performance

Modular growth

Less danger on single-point failure

Disadvantages:

Complexity

Cost

Security

Integrity control more difficult

Lack of standards

Lack of experience

Database design more complex

Possible slow response

Q.4 Explain the different types of DDBMS.

Ans: There are two types of DDBMS : Homogeneous and Heterogeneous

DDBMSs.

Homogeneous DDBMS :

In homogeneous DDBMS, all sites use the same DBMS product.

Much easier to design and manage.

This design provides incremental growth by making additional new
sites to DDBMS easy.

Allows increased performance by exploiting the parallel processing
capability of multiple sites.

Heterogeneous DDBMS :

In heterogeneous DDBMS, all sites may run different DBMS products,
which need not to be based on the same underlying data model and so

For free study notes log on: www.gurukpo.com

Database Management System

the system may be composed of RDBMS, ORDBMS and OODBMS
products.

In heterogeneous system, communication between different DBMS is
required for translations.

In order to provide DBMS transparency, users must be able to make
requests in the language of the DBMS at their local site.

Data from the other sites may have different hardware, different
DBMS products and combination of different hardware and DBMS
products.

The task for locating those data and performing any necessary
translation are the abilities of heterogeneous DDBMS.

Q.5 What is not a DDBMS?

or

What do you mean by centralized database.

Ans.: The following are not a DDBMS :

A time sharing computer system.

A loosely or tightly coupled multiprocessor system.

A database which resides at one of the nodes of a network of
computers – this is a centralized database on a network node.

For free study notes log on: www.gurukpo.com

Q.4 What do you mean by Centralized Databases?

Ans.: A "centralized DBMS"is a DBMS where all the data within the database is
stored on a single computer, usually the secondary storage device of the
computer. In a centralized DBMS, as the number of transactions executing on
the DBMS increases, performance of the DBMS significantly decreases and
becomes a drain on the overall performance of the computer

Q.5 How the Distributed Databases is different from Centralized Databases?

Ans.: A database which resides all of its data centralized and on one machine or
some machines which are connected together but looks one for the users
looking from outside. And whoever wants to use data, he picks data from
there and uses and saves again there.

While Distributed databases can be defined as a collection of multiple,
logically interrelated databases distributed over a computer network.

And distributed database management system (DDBMS) manages the
distributed databases and makes this distribution transparent to the user.

All the database must be logically related that are managed by DDBMS

(distributed database management system). The distributed databases are not

just the ‗collection of files‘ stored individually at different network nodes.

Rather to form DDBS (distributed databases) all the files should be logically

related and there should be structures among those files.

For free study notes log on: www.gurukpo.com

Database Management System

In the case of distributed databases, data must be physically distributed

across the network nodes otherwise they will simply be separate databases

not ‗distributed databases‘.

Sometimes the multiprocessor system is also considered as distributed data
processing systems but in fact it is not true.

As multiprocessor system may use either ‗shared-nothing architecture‘ or
‗shared-everything architecture‘. Shared-nothing architecture system may
work like distributed computing environment but it is not. because in
distributed environment there may be heterogeneity of hardware as well as
operating system at different sites in network which is not the case in
multiprocessor systems. Thus for distributed databases data must be
distributed over network nodes.

While centralized databases are managed by DBMS, and no data distribution
is done in this case.

Distributed data is defined as collection of logically distributed database
which are connected with each other through a network. A distributed
database management system is used for managing distributed database.
Each side has its own database and operating system.

A centralized database has all its data on one place. As it is totally different
from distributed database which has data on different places. In centralized
database as all the data reside on one place so problem of bottle-neck can
occur, and data availability is not efficient as in distributed database. While in
distributed databases users can issue commands from any location to access
data and it does not affect the working of database. Distributed database
allows us to store one copy of data at different locations. Its advantage is that
if a user wants to access data then the nearest site (location) will provide data
so it takes less time.

There are multiple sites (computers) in a distributed database so if one site
fails then system will not be useless, because other sites can do their job
because the same copy of data is installed on every location. You will not find
this thing in centralized database.

Any time new nodes (computers) can be added to the network without any
difficulty.

Users do not know about the physical storage of data and it is known as
distribution transparency, as we know that ideally, a DBMS must not show
the details of where each file is stored or we can say that a DBMS should be
distribution transparent.

For free study notes log on: www.gurukpo.com

Q.4 Define Client/Server Architecture.

Ans.: The Client-Server software architecture model, distinguishes client systems

from server systems, which communicate over a computer network. A client-

server application is a distributed system that constitutes of both client and

server software. A client software or process may initiate a communication

session, while the server waits for a requests from a client.[1]

Client/Server describes the relationship between two computer programs in

which one program, the client, makes a service request from another

program, the server, which fulfills the request. Although the client/server

idea can be used by programs within a single computer, it is a more

important idea in a network. In a network, the client/server model provides a

convenient way to efficiently interconnect programs that are distributed

across different locations. Computer transactions using the client/server

model are very common. Most Internet applications, such as email, web

access and database access, are based on the client/server model. For

example, a web browser is a client program at the user computer that may

access information at any web server in the world. To check your bank

account from your computer, a web browser client program in your

computer forwards your request to a web server program at the bank. That

program may in turn forward the request to its own database client program

that sends a request to a database server at another bank computer to retrieve

your account balance. The balance is returned back to the bank database

client, which in turn serves it back to the web browser client in your personal

computer, which displays the information for you.

The Client/Server model has become one of the central ideas of network
computing. Most business applications being written today use the
client/server model. So does the Internet's main application protocols, such
as HTTP, SMTP, Telnet, DNS, etc. In marketing, the term has been used to
distinguish distributed computing by smaller dispersed computers from the
"monolithic" centralized computing of mainframe characteristics computers.
But this distinction has largely disappeared as mainframes and their
applications have also turned to the client/server model and become part of
network computing.

Each instance of the client software can send data requests to one or more

connected servers. In turn, the servers can accept these requests, process them,

and return the requested information to the client. Although this concept can

For free study notes log on: www.gurukpo.com

Database Management System

be applied for a variety of reasons to many different kinds of applications, the

architecture remains fundamentally the same.

The most basic type of client-server architecture employs only two types of

hosts: clients and servers. This type of architecture is sometimes referred to as

two-tier. It allows devices to share files and resources.

These days, clients are most often web browsers, although that has not

always been the case. Servers typically include web servers, database servers

and mail servers. Online gaming is usually client-server too. In the specific

case of MMORPG, the servers are typically operated by the company selling

the game; for other games one of the players will act as the host by setting his

game in server mode.

The interaction between client and server is often described using sequence
diagrams. Sequence diagrams are standardized in the Unified Modeling
Language.

When both the client- and server-software are running on the same computer,
this is called a single seat setup.

Characteristics of a client

Request sender is known as Client :

Initiates requests.

Waits for and receives replies.

Usually connects to a small number of servers at one time.

Typically interacts directly with end-users using a graphical user interface.

Characteristics of a Server :

Receiver of request which is sent by client is known as server.

Passive (slave).

Waits for requests from clients.

Upon receipt of requests, processes them and then serves replies.

Usually accepts connections from a large number of clients.

Typically does not interact directly with end-users.

□ □ □

For free study notes log on: www.gurukpo.com

Chapter-7

Data and Query Processing

Q.1 Discuss the factors which determines the role of Data Processing?

Ans.: It is important to understand information system in the context of their use in

information processing. Which is also called data processing. We can define

data or information processing as the processing of data to make it more

usable and meaningful, Thus transforming it into information. The factors

which determines the role of data processing are as follows -

Data versus Information :

 Data Information

Meaning: Plain facts When data are
 processed,

 organized,

 structured or
 presented in a given
 context so as to make
 them useful, they are
 called Information.

Data are plain facts. The word "data" is plural for "datum." When data are

processed, organized, structured or presented in a given context so as to

make them useful, they are called Information.

It is not enough to have data (such as statistics on the economy). Data
themselves are fairly useless. But when these data are interpreted and
processed to determine its true meaning, they becomes useful and can be
called Information.

The MIS versus The Data Processing System :

Data Processing Systems, or DP Systems, are concerned with transaction
handling and record-keeping, usually for a particular functional area.

Here are a few differences between an MIS and a DPS :

For free study notes log on: www.gurukpo.com

Database Management System 63

The integrated database of an MIS enables greater flexibility in
meeting the information needs of management.

An MIS integrates the information flow between functional areas
(accounting, marketing, inventory management, etc.), whereas DP
systems tend to support a single functional area.

An MIS caters to the information needs of all levels of management,
whereas DP systems focus on the clerical and operational levels.

Management's information needs are supported on a timelier basis
with an MIS than they are with a DP system. An MIS, for example, has
online inquiry capability for the immediate generation of reports,
whereas a DP system usually produces only scheduled reports.

Q.2 How will you define Database Query Language?

Ans.: Query Languages are computer languages used to make queries into
databases and information systems.

Broadly, query languages can be classified according to whether they are
database query languages or information retrieval query languages.
Examples include:

QL is a proprietary object-oriented query language for querying relational
databases.

Common Query Language (CQL) a formal language for representing queries
to information retrieval systems such as web indexes or bibliographic
catalogues.

CODASYL D is a query language for truly relational database management
systems (TRDBMS);

DMX is a query language for Data Mining models;

Datalog is a query language for deductive databases;

ERROL is a query language over the Entity-Relationship Model (ERM),
especially tailored for relational databases;

Gellish English is a language that can be used for queries in Gellish English
Databases [1], for dialogues (requests and responses) as well as for
information modeling and knowledge modeling;

ISBL is a query language for PRTV, one of the earliest relational database
management systems;

For free study notes log on: www.gurukpo.com

LDAP is an application protocol for querying and modifying directory
services running over TCP/IP.

MQL is a cheminformatics query language for a substructure search allowing
beside nominal properties also numerical properties;

MDX is a query language for OLAP databases;

OQL is Object Query Language;

OCL (Object Constraint Language). Despite it's name, OCL is also an object
query language and a OMG standard.

OPath, intended for use in querying WinFS Stores;

Poliqarp Query Language is a special query language designed to analyze
annotated text. Used in the Poliqarp search engine;

QUEL is a relational database access language, similar in most ways to SQL;

SMARTS is the cheminformatics standard for a substructure search;

SPARQL is a query language for RDF graphs;

SQL is a well known query language for relational databases;

SuprTool is a proprietary query language for SuprTool, a database access
program used for accessing data in Image/SQL (TurboIMAGE) and Oracle
databases;

TMQL Topic Map Query Language is a query language for Topic Maps;

XQuery is a query language for XML data sources;

Q.3 What is Query Processing?

Ans.: Query Processing is the procedure of selecting the best plan or strategies to be
used in responding to a database request. Query is actually a stepwise
process ,in which first step is to transform thequery into standard form. For
example, Query is QBE is translated into SQL, and subsequently into a
relation algebric expression during the tranformation parser perform portion
of the query processor checks the syntax and varifies.

In the next step a number of strategies called access plans are generated for
evaluating the tranformed query.the cost of each access plan is estimeted and
the optimal one is chosen and executed.

STUDENT (std# ,std-name)

REGISTRATION(std#,course#)

GRADE(std#,course#,grade)

For free study notes log on: www.gurukpo.com

Database Management System 65

COURSE (course#,course-name,instructor)

Genral strategies for Query processing:

Query Representation :

Query posed by users are not in a form which is convenient for internal

system use .So query procesdsors tranform it into thre form of relational

calculus ,relational algebra, Object graph,operator graph or tables.

Operator Graph :

An operator graph despicts how a sequence of operation can be performed. In

operator graph s, operations are represented by nodes and the flow of data is

shown by directed edges.

Example Query : ―List names students registered in database course‖

Πstd-name(σcourse-name=‖database‘(STUDENT |X| REGISTRATION|X|

COURSE)

Steps in Query Processing :

Convert to a Standard Strate Point : We can use relational algebric
form and operator graph as the starting point.

We can assume that the query expression is in conjunctive normal
form.

Transform the Query : The query is transformed by replasing
expression in the query with those that are likely to enhance
performance.

Simplify the Query : The query is simplified by removing redundant
and useless operations.

Prepare Alternative Access Plans : The alternative access plan
indicates the order in which the various operations will be performed
and the cost of such plan.The cost is depends upon whether or the not
the relations. Are sorted and the presence or absence of indexes. The
optional aceess plan is chosen.

Genral Processing Straitegies :

Perform selection as early as possible.

Combine a number of unary operations.

Convert the cartesian product with a certain subsequent selection into

join.

For free study notes log on: www.gurukpo.com

66

Compute common expression once.

Preprocess the relations.

Query Evaluation Plans :

We can classify the query evaluation approaches according to the number of
relations involved in query expression.

These are as follows :

One Variable Expression

Sequential Access

Two Variable Expression

Nested Loop Method

Sort and Merge Method

Hash Join.

□ □ □

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-8

Structured Query Language

Q.1 Describe basic SQL with its Procedural Extensions.

Ans.: Structured Query Language (SQL) is a database computer language
designed for the retrieval and management of data in relational database
management systems (RDBMS), database schema creation and modification,
and database object access control management.

SQL is a standard interactive and programming language for querying and
modifying data and managing databases. Although SQL is both an ANSI and
an ISO standard, many database products support SQL with proprietary
extensions to the standard language. The core of SQL is formed by a
command language that allows the retrieval, insertion, updating, and
deletion of data, and performing management and administrative functions.
SQL also includes a Call Level Interface (SQL/CLI) for accessing and
managing data and databases remotely.

The first version of SQL was developed at IBM by Donald D. Chamberlin and
Raymond F. Boyce in the early 1970s. This version, initially called SEQUEL,
was designed to manipulate and retrieve data stored in IBM's original
relational database product, System R. The SQL language was later formally
standardized by the American National Standards Institute (ANSI) in 1986.
Subsequent versions of the SQL standard have been released as International
Organization for Standardization (ISO) standards.

Originally designed as a declarative query and data manipulation language,
variations of SQL have been created by SQL database management system
(DBMS) vendors that add procedural constructs, control-of-flow statements,
user-defined data types, and various other language extensions. With the
release of the SQL:1999 standard, many such extensions were formally
adopted as part of the SQL language via the SQL Persistent Stored Modules
(SQL/PSM) portion of the standard.Common criticisms of SQL include a
perceived lack of cross-platform portability between vendors, inappropriate
handling of missing data, and unnecessarily complex and occasionally
ambiguous language grammar and semantics.

For free study notes log on: www.gurukpo.com

History :

During the 1970s, a group at IBM's San Jose research center developed the

System R relational database management system, based on the model
introduced by Edgar F. Codd in his influential paper, A Relational Model of

Data for Large Shared Data Banks.[3] Donald D. Chamberlin and Raymond F.
Boyce of IBM subsequently created the Structured English Query Language

(SEQUEL) to manipulate and manage data stored in System R.[4] The
acronym SEQUEL was later changed to SQL because "SEQUEL" was a
trademark of the UK-based Hawker Siddeley aircraft company.

The first non-commercial non-SQL RDBMS, Ingres, was developed in 1974 at
the U.C. Berkeley. Ingres implemented a query language known as QUEL,
which was later supplanted in the marketplace by SQL.

In the late 1970s, Relational Software, Inc. (now Oracle Corporation) saw the

potential of the concepts described by Codd, Chamberlin, and Boyce and

developed their own SQL-based RDBMS with aspirations of selling it to the

U.S. Navy, CIA, and other government agencies. In the summer of 1979,

Relational Software, Inc. introduced the first commercially available

implementation of SQL, Oracle V2 (Version2) for VAX computers. Oracle V2

beat IBM's release of the System/38 RDBMS to market by a few weeks.

After testing SQL at customer test sites to determine the usefulness and

practicality of the system, IBM began developing commercial products based

on their System R prototype including System/38, SQL/DS, and DB2, which

were commercially available in 1979, 1981, and 1983, respectively.

between vendors, inappropriate handling of missing data, and unnecessarily
complex and occasionally ambiguous language grammar and semantics.

SQL

Paradigm Multi-paradigm

Appeared in 1974

Designed by Donald D. Chamberlin and Raymond F.

Boyce

Developer IBM

For free study notes log on: www.gurukpo.com

SQL:2006/ 2006

Typing discipline static , strong

Major implementations Many

Dialects SQL-86, SQL-89, SQL-92, SQL:1999,
SQL:2003, SQL:2006

Influenced by Datalog

Influenced CQL, LINQ, Windows PowerShell

OS Cross-platform

Latest release

Database Management System

Standardization :

SQL was adopted as a standard by ANSI in 1986 and ISO in 1987. In the

original SQL standard, ANSI declared that the official pronunciation for SQL
is "es queue el". However, many English-speaking database professionals still
use the nonstandard pronunciation /sikwel/ (like the word "sequel"). Until

1996, the National Institute of Standards and Technology (NIST) data
management standards program was tasked with certifying SQL DBMS
compliance with the SQL standard. In 1996, however, the NIST data
management standards program was dissolved, and vendors are now relied
upon to self-certify their products for compliance.

The SQL standard has gone through a number of revisions, as shown below :

Year Name Alias Comments

1986 SQL-86 SQL-87 First published by ANSI.

Ratified by ISO in 1987.

1989 SQL-89 FIPS 127-1 Minor revision, adopted as FIPS

127-1.

1992 SQL-92 SQL2, FIPS 127-2 Major revision (ISO 9075), Entry

Level SQL-92 adopted as FIPS

127-2.

http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Strong_typing
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/List_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Programming_language_dialect
http://en.wikipedia.org/wiki/SQL-92
http://en.wikipedia.org/wiki/SQL-92
http://en.wikipedia.org/wiki/Datalog
http://en.wikipedia.org/wiki/CQL
http://en.wikipedia.org/wiki/CQL
http://en.wikipedia.org/wiki/Windows_PowerShell
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Software_release
http://special.lib.umn.edu/findaid/xml/cbi00168.xml
http://en.wikipedia.org/wiki/1996
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/1989
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://en.wikipedia.org/wiki/1992
http://en.wikipedia.org/wiki/SQL-92

For free study notes log on: www.gurukpo.com

70

1999 SQL:1999 SQL3 Added regular expression
matching, recursive queries,
triggers, support for procedural
and control-of-flow statements,
non-scalar types, and some
object-oriented features.

2003 SQL:2003

Introduced XML-related
features, window functions,
standardized sequences, and
columns with auto-generated
values (including identity-
columns).

Year Name Alias Comments

2006 SQL:2006

ISO/IEC 9075-14:2006 defines

ways in which SQL can be used

in conjunction with XML. It

defines ways of importing and

storing XML data in an SQL

database, manipulating it within

the database and publishing

both XML and conventional

SQL-data in XML form. In

addition, it provides facilities

that permit applications to

integrate into their SQL code the

use of XQuery, the XML Query

Language published by the

World Wide Web Consortium

(W3C), to concurrently access

ordinary SQL-data and XML

documents.

The SQL standard is not freely available. SQL:2003 and SQL:2006 may be

purchased from ISO or ANSI. A late draft of SQL:2003 is freely available as a

of-flow constructs. These are:

Database Management System

zip archive, however, from Whitemarsh Information Systems Corporation.

The zip archive contains a number of PDF files that define the parts of the

SQL:2003 specification. Scope and extensions.

Procedural Extensions :

SQL is designed for a specific purpose: to query data contained in a relational

database. SQL is a set-based, declarative query language, not an imperative

language such as C or BASIC. However, there are extensions to Standard SQL

which add procedural programming language functionality, such as control-

Source

Common

Full Name
Name

ANSI/ISO
SQL/PSM

SQL/Persistent Stored Modules

Standard

IBM

SQL PL
SQL Procedural Language (implements

SQL/PSM)

Microsoft/
T-SQL

Transact-SQL

Sybase

MySQL

SQL/PSM

SQL/Persistent Stored Module (as in ISO

SQL:2003)

Oracle PL/SQL Procedural Language/SQL (based on Ada)

PostgreSQL

PL/pgSQL

Procedural Language/PostgreSQL
Structured Query Language (based on

Oracle PL/SQL)

PostgreSQL

PL/PSM
Procedural Language/Persistent Stored

Modules (implements SQL/PSM)

In addition to the standard SQL/PSM extensions and proprietary SQL
extensions, procedural and object-oriented programmability is available on
many SQL platforms via DBMS integration with other languages. The SQL
standard defines SQL/JRT extensions (SQL Routines and Types for the Java
Programming Language) to support Java code in SQL databases. SQL Server
2005 uses the SQLCLR (SQL Server Common Language Runtime) to host
managed .NET assemblies in the database, while prior versions of SQL Server

http://en.wikipedia.org/wiki/ZIP_file_format
http://www.wiscorp.com/SQLStandards.html
http://en.wikipedia.org/wiki/PDF
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Set
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/BASIC_programming_language
http://en.wikipedia.org/wiki/Procedural_programming_language
http://en.wikipedia.org/wiki/SQL/PSM
http://en.wikipedia.org/wiki/SQL_PL
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/T-SQL
http://en.wikipedia.org/wiki/Sybase
http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/PL/SQL
http://en.wikipedia.org/wiki/Ada
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/PL/pgSQL
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/SQL/JRT
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/SQL_Server_2005
http://en.wikipedia.org/wiki/SQL_Server_2005
http://en.wikipedia.org/wiki/SQLCLR
http://en.wikipedia.org/wiki/Microsoft_.NET

For free study notes log on: www.gurukpo.com

http://www.gurukpo.com/

For free study notes log on: www.gurukpo.com

were restricted to using unmanaged extended stored procedures which were
primarily written in C. Other database platforms, like MySQL and Postgres,
allow functions to be written in a wide variety of languages including Perl,
Python, Tcl, and C.

Q.2 Define Keys.

Ans.: i) Primary Key : Most DBMSs require a table to be defined as having a
single key, rather than a number of possible keys. A primary key is a
key which the database designer has designated for this purpose any
record can be identified by the use of primary key. Primary key should
not be null. There are basically two constraints for being a primary key
:

It should not be null.

Itshould not be repeated.

Super Key : A superkey is an attribute or set of attributes that uniquely
identifies rows within a table; in other words, two distinct rows are
always guaranteed to have distinct superkeys. {Employee ID,
Employee Address, Skill} would be a superkey for the "Employees'
Skills" table; {Employee ID, Skill} would also be a superkey.

Candidate Key : A candidate key is a minimal superkey, that is, a
superkey for which we can say that no proper subset of it is also a
superkey. {Employee Id, Skill} would be a candidate key for the
"Employees' Skills" table. In otherwords, It is a key which is not a
primary key itself but having all the properties for being a primary
key.

Foreign Key : In the context of relational databases, a Foreign Key is a
referential constraint between two tables.[1] The foreign key identifies a
column or a set of columns in one (referencing) table that refers to a

column or set of columns in another (referenced) table. The columns in
the referencing table must be the primary key or other candidate key in
the referenced table. The values in one row of the referencing columns
must occur in a single row in the referenced table. Thus, a row in the
referencing table cannot contain values that don't exist in the
referenced table (except potentially NULL). This way references can be
made to link information together and it is an essential part of
database normalization. Multiple rows in the referencing table may
refer to the same row in the referenced table. Most of the time, it
reflects the one (master table, or referenced table) to many (child table,
or referencing table) relationship.

For free study notes log on: www.gurukpo.com

Database Management System

Unique Key : A unique key is the key by which a user can identify a
domain uniquely. It is different from the primary key in context that a
unique key can be null.

Q.3 Describe the Language Elements of SQL.

Ans.: Language Elements :

The SQL language is sub-divided into several language elements, including :

Statements which may have a persistent effect on schemas and data, or which

may control transactions, program flow, connections, sessions, or diagnostics.

Queries which retrieve data based on specific criteria.

Expressions which can produce either scalar values or tables consisting of

columns and rows of data.

Predicates which specify conditions that can be evaluated to SQL three-valued

logic (3VL) Boolean truth values and which are used to limit the effects of

statements and queries, or to change program flow.

Clauses which are (in some cases optional) constituent components of

statements and queries.

Whitespace is generally ignored in SQL statements and queries, making it

easier to format SQL code for readability.

SQL statements also include the semicolon (";") statement terminator. Though

not required on every platform, it is defined as a standard part of the SQL

grammar.

Queries :

The most common operation in SQL databases is the query, which is
performed with the declarative SELECT keyword. SELECT retrieves data
from a specified table, or multiple related tables, in a database. While often
grouped with Data Manipulation Language (DML) statements, the standard

For free study notes log on: www.gurukpo.com

SELECT query is considered separate from SQL DML, as it has no persistent
effects on the data stored in a database. Note that there are some platform-
specific variations of SELECT that can persist their effects in a database, such
as the SELECT INTO syntax that exists in some databases.

SQL queries allow the user to specify a description of the desired result set,
but it is left to the devices of the database management system (DBMS) to
plan, optimize, and perform the physical operations necessary to produce
that result set in as efficient a manner as possible. An SQL query includes a
list of columns to be included in the final result immediately following the
SELECT keyword. An asterisk ("*") can also be used as a "wildcard" indicator
to specify that all available columns of a table (or multiple tables) are to be
returned. SELECT is the most complex statement in SQL, with several
optional keywords and clauses.

The following is an example of a SELECT query that returns a list of
expensive books. The query retrieves all rows from the books table in which
the price column contains a value greater than 100.00. The result is sorted in
ascending order by title. The asterisk (*) in the select list indicates that all
columns of the books table should be included in the result set.

SELECT *

FROM books

WHERE price > 100.00

ORDER BY title;

The example below demonstrates the use of multiple tables in a join,
grouping, and aggregation in an SQL query, by returning a list of books and
the number of authors associated with each book.

SELECT books.title, count(*) AS Authors

FROM books

JOIN book_authors

ON books.isbn = book_authors.isbn

GROUP BY books.title;

Example output might resemble the following :

Title Authors

SQL Examples and Guide 3

The Joy of SQL 1

How to use Wikipedia 2

For free study notes log on: www.gurukpo.com

Database Management System

Pitfalls of SQL 1

How SQL Saved my Dog 1

(The underscore character "_" is often used as part of table and column names
to separate descriptive words because other punctuation tends to conflict
with SQL syntax. For example, a dash "-" would be interpreted as a minus
sign.)

Under the precondition that isbn is the only common column name of the two
tables and that a column named title only exists in the books table, the above
query could be rewritten in the following form:

SELECT title, count(*) AS Authors

FROM books

NATURAL JOIN book_authors

GROUP BY title;

However, many vendors either don't support this approach, or it requires
certain column naming conventions. Thus, it is less common in practice.

Data retrieval is very often combined with data projection when the user is
looking for calculated values and not just the verbatim data stored in
primitive data types, or when the data needs to be expressed in a form that is
different from how it's stored. SQL allows the use of expressions in the select
list to project data, as in the following example which returns a list of books
that cost more than 100.00 with an additional sales_tax column containing a
sales tax figure calculated at 6% of the price.

SELECT isbn, title, price, price * 0.06 AS sales_tax

FROM books

WHERE price > 100.00

ORDER BY title;

Data manipulation :

First, there are the standard Data Manipulation Language (DML) elements.
DML is the subset of the language used to add, update and delete data:

INSERT is used to add rows (formally tuples) to an existing table, for example
:

INSERT INTO my_table (field1, field2, field3) VALUES ('test', 'N', NULL);

UPDATE is used to modify the values of a set of existing table rows, eg:

UPDATE my_table SET field1 = 'updated value' WHERE field2 = 'N';

DELETE removes zero or more existing rows from a table, eg:

DELETE FROM my_table WHERE field2 = 'N';

For free study notes log on: www.gurukpo.com

MERGE is used to combine the data of multiple tables. It is something of a
combination of the INSERT and UPDATE elements. It is defined in the
SQL:2003 standard; prior to that, some databases provided similar
functionality via different syntax, sometimes called an "upsert".

Transaction controls :

Transactions, if available, can be used to wrap around the DML operations:

START TRANSACTION (or BEGIN WORK, or BEGIN TRANSACTION,

depending on SQL dialect) can be used to mark the start of a database
transaction, which either completes completely or not at all.

COMMIT causes all data changes in a transaction to be made permanent.

ROLLBACK causes all data changes since the last COMMIT or ROLLBACK
to be discarded, so that the state of the data is "rolled back" to the way it was
prior to those changes being requested.

Once the COMMIT statement has been executed, the changes cannot be rolled
back. In other words, its meaningless to have ROLLBACK executed after
COMMIT statement and vice versa.

COMMIT and ROLLBACK interact with areas such as transaction control and
locking. Strictly, both terminate any open transaction and release any locks
held on data. In the absence of a START TRANSACTION or similar
statement, the semantics of SQL are implementation-dependent. Example: A
classic bank transfer of funds transaction.

START TRANSACTION;

UPDATE ACCOUNTS SET AMOUNT=AMOUNT-200 WHERE

ACCOUNT_NUMBER=1234;

UPDATE ACCOUNTS SET AMOUNT=AMOUNT+200 WHERE

ACCOUNT_NUMBER=2345;

IF ERRORS=0 COMMIT;

IF ERRORS<>0 ROLLBACK;

Data Definition :

The second group of keywords is the Data Definition Language (DDL). DDL

allows the user to define new tables and associated elements. Most

commercial SQL databases have proprietary extensions in their DDL, which

allow control over nonstandard features of the database system. The most

basic items of DDL are the CREATE, ALTER, RENAME, TRUNCATE and

DROP statements:

For free study notes log on: www.gurukpo.com

Database Management System

CREATE causes an object (a table, for example) to be created within the

database.

DROP causes an existing object within the database to be deleted, usually

irretrievably.

TRUNCATE deletes all data from a table (non-standard, but common SQL

statement).

ALTER statement permits the user to modify an existing object in various

ways -- for example, adding a column to an existing table.

Example :

CREATE TABLE my_table (

my_field1 INT,

my_field2 VARCHAR (50),

my_field3 DATE NOT NULL,

PRIMARY KEY (my_field1, my_field2)

);

Data Control :

The third group of SQL keywords is the Data Control Language (DCL). DCL
handles the authorization aspects of data and permits the user to control who
has access to see or manipulate data within the database. Its two main
keywords are:

GRANT authorizes one or more users to perform an operation or a set of
operations on an object.

REVOKE removes or restricts the capability of a user to perform an operation
or a set of operations.

Example :

GRANT SELECT, UPDATE ON my_table TO some_user, another_user

Other :

ANSI-standard SQL supports double dash, --, as a single line comment
identifier (some extensions also support curly brackets or C style /*
comments */ for multi-line comments).

Example :

SELECT * FROM inventory -- Retrieve everything from inventory table

Some SQL servers allow user-defined functions Criticisms of SQL

For free study notes log on: www.gurukpo.com

Technically, SQL is a declarative computer language for use with "SQL
databases". Theorists and some practitioners note that many of the original
SQL features were inspired by, but in violation of, the relational model for
database management and its tuple calculus realization. Recent extensions to
SQL achieved relational completeness, but have worsened the violations, as
documented in The Third Manifesto.

In addition, there are also some criticisms about the practical use of SQL:

Implementations are inconsistent and, usually, incompatible between
vendors. In particular date and time syntax, string concatenation, nulls, and
comparison case sensitivity often vary from vendor to vendor.

The language makes it too easy to do a Cartesian join (joining all possible
combinations), which results in "run-away" result sets when WHERE clauses
are mistyped. Cartesian joins are so rarely used in practice that requiring an
explicit CARTESIAN keyword may be warranted. SQL 1992 introduced the
CROSS JOIN keyword that allows the user to make clear that a cartesian join
is intended, but the shorthand "comma-join" with no predicate is still
acceptable syntax.

It is also possible to misconstruct a WHERE on an update or delete, thereby
affecting more rows in a table than desired.

The grammar of SQL is perhaps unnecessarily complex, borrowing a COBOL-
like keyword approach, when a function-influenced syntax could result in
more re-use of fewer grammar and syntax rules. This is perhaps due to IBM's
early goal of making the language more English-like so that it is more
approachable to those without a mathematical or programming background.
(Predecessors to SQL were more mathematical.)

Reasons for Lack of Portability :

Popular implementations of SQL commonly omit support for basic features
of Standard SQL, such as the DATE or TIME data types, preferring variations
of their own. As a result, SQL code can rarely be ported between database
systems without modifications.

There are several reasons for this lack of portability between database
systems:

The complexity and size of the SQL standard means that most databases do
not implement the entire standard.

The standard does not specify database behavior in several important areas
(e.g. indexes, file storage...), leaving it up to implementations of the database
to decide how to behave.

For free study notes log on: www.gurukpo.com

Database Management System

The SQL standard precisely specifies the syntax that a conforming database
system must implement. However, the standard's specification of the
semantics of language constructs is less well-defined, leading to areas of
ambiguity.

Many database vendors have large existing customer bases; where the SQL
standard conflicts with the prior behavior of the vendor's database, the
vendor may be unwilling to break backward compatibility.

Q.4 What are the alternatives of SQL?

Ans.: Alternatives to SQL :

A distinction should be made between alternatives to relational query
languages and alternatives to SQL. The list below are proposed alternatives to
SQL, but are still (nominally) relational. See navigational database for
alternatives to relational:

IBM Business System 12 (IBM BS12)

Hibernate Query Language (HQL) - A Java-based tool that uses modified

SQL

Quel introduced in 1974 by the U.C. Berkeley Ingres project.

Object Query Language

QL - object-oriented Datalog and QBE (Query By Example) create by Moshe
Zloof

LINQ

4D Query Language (4D QL) and so many other languages which can be used
as the alternatives of SQL.

Q.5 Define QBEL including Aggregate Operations.

Ans.: QBE is both a query language and the name of a DB system including it. The

system is no longer in use, but the language is part of IBM's Query

Management Facility (QMF).

Basic Structure :

QBE has ``two-dimensional'' syntax.

Queries are expressed by example.

Close correspondence with domain relational calculus.

Non-procedural.

For free study notes log on: www.gurukpo.com

Queries are expressed using skeleton tables.

User selects the skeletons needed.

User fills in skeletons with example rows.

An example row consists of constants and example elements which are
really domain variables.

Domain variables are preceded by an underscore character.

Constants appear without any qualification.

Simple Queries :

For example, to find all customers having an account at the SFU
branch :

deposit bname account# cname balance

SFU

P._x

A P. before the variable causes printing.

A P.ALL. prefix suppresses duplicate elimination.

A P. in front of the row prints all attributes.

The domain variable may be omitted if it is not used elsewhere.

Arithmetic expressions are allowed.

Comparison operators are allowed, space on left hand side is

left blank.

To find the names of all branches not located in Burnaby :

branch bname assets bcity

P.

Burnaby

For free study notes log on: www.gurukpo.com

To find all customers having an account at either branch or both :

Find all customers having an account at the same branch as John

Database Management System

To find all customers having an account at both the SFU and the
MetroTown branch :

deposit bname account# cname balance

SFU

P._x

MetroTown _x

deposit bname account# cname balance

SFU

P._x

MetroTown P._y

:

deposit bname account# cname balance

_x

John

_x P._y

Queries on Several Relations :

Queries on several relations require several skeleton tables.

To find the name and city of all customers having a loan at the SFU
branch :

For free study notes log on: www.gurukpo.com

borrow bname loan# cname amount

SFU _x

customer cname street ccity

P._x P._y

Find the name of all customers having an account at the SFU branch,
but no loan from that branch.

Queries involving negation can be expressed by putting a sign under
the relation name beside an example row :

deposit bnameaccount# cname balance

SFU P._x

deposit bname loan# cname amount

SFU _x

82

To find all customers who have accounts at two different branches : -

For free study notes log on: www.gurukpo.com

The Condition Box :

When it is difficult or impossible to express all constraints on the
domain variables within the skeleton tables, the condition box may be
used.

To add the constraint that we are only interested in customers other
than John to the above query, we include the condition box:

conditions

_x =John

To find all account numbers with balances between $1,300 and $1,500 :

deposit bname account# cname balance

P. _x

conditions

_x 1300

_x 1500

Database Management System

deposit bnam eaccount# cnam ebalance

_y

_y

P._x

_x

For free study notes log on: www.gurukpo.com

deposit bname account# cname balance

P. _x

conditions

_x =(1300 and 2000 and 1500

An unconventional use of the or construct allows comparison with
several constant values :

conditions

_x = (Burnaby or Richmond)

The Result Relation :

Logical expressions and and or may appear in the condition box.

To find all account numbers where the balance is between $1,300 and

$2,000, but is not $1,500 :

If the result of a query includes attributes from several relation

schemes, we need a way of displaying the result in a single table.

We can declare a temporary result relation including the attributes to

be displayed. We put the print command only in that table.

To find the customer names and cities and account numbers for all

customers having an account at the SFU branch :

For free study notes log on: www.gurukpo.com

Database Management System

deposit bnameaccount# cname balance

SFU _z _x

customer cname street ccity

 _x _y

result cname ccity account #

P. _x _y _z

Ordering the Display of Tuples :

The order in which tuples are displayed can be controlled by adding
the command AO. (ascending order) or DO. (descending order) to the
print command :

deposit bname account# cname balance

SFU P.A.O.

To sort first by name, and then by balance for those with multiple
accounts :

For free study notes log on: www.gurukpo.com

deposit bname account# cname balance

SFU

P.AO (1) P.DO (2)

Aggregate Operations :

QBE includes the aggregate operators AVG, MAX, MIN, SUM and
CNT. As QBE eliminates duplicates by default, they must have ALL.
appended to them.

To find the total balance of all accounts belonging to John :

deposit bname account# cname balance

John P.SUM.ALL.

All aggregate operators must have ALL. appended, so to override the
ALL.\ we must add UNQ. (unique). (NOTE: a number of examples in
the text incorrectly show UNQ. replacing ALL.)

deposit bname account# cname balance

Main P.CNT.UNQ.ALL.

To compute functions on groups, we use the G. operator. To find the

average balance at each branch :

For free study notes log on: www.gurukpo.com

conditions

AVG.ALL._x > 1200

To find all customers who have an account at all branches located in

Burnaby, we can do :

deposit bname account# cname balance

_y P.G._x

branch bname assets bcity

_y Burnaby

_z Burnaby

Database Management System

deposit bname account# cname balance

P.G.

P.AVG.ALL.x

To find the average balances at only branches where the average is

more than $1,200, we add the condition box :

For free study notes log on: www.gurukpo.com

deleted, or only some columns.

Delete all of Smith's account records :

Delete the branch-city value for the SFU branch :

Delete all loans with loan numbers between 1300 and 1500 :

CNT.UNQ.ALL._Y=

CNT.UNQ.ALL._Z

conditions

Modifying the Database :

QBE has facilities for modifying the database.

We simply use D. instead of the P. operator. Whole tuples may be

deposit bname account# cname balance

D.

Smith

branch bname assets bcity

SFU

D.

borrow bname loan# cname amount

D.

_x

For free study notes log on: www.gurukpo.com

conditions

_x =(1300 and 1500)

Delete all accounts at branches located in Burnaby :

Insertion :

Insertion uses the I. operator.

To insert an account tuple for Smith :

Database Management System

deposit bname account# cname balance

D. _x

branch bname assets bcity

_x

Burnaby

deposit bname account# cname balance

1. SFU 9372 Smith 1200

For free study notes log on: www.gurukpo.com

borrow bname loan# cname amount

Updates :

We can update individual attributes with the U. operator. Fields left

blank are not changed.

To update the assets of the SFU branch to $10,000,000 :

To make interest payments of 5% on all balances :

If values are missing, nulls are inserted.

To provide all loan customers in the SFU branch with a $200 savings
account :

deposit bname account# cname balance

1. SFU _x _y 200

SFU _x _y

branch bname assets bcity

SFU U.10000000

For free study notes log on: www.gurukpo.com

Database Management System

Deposit bname account# cname balance

U.

_x*1.05

_x

Q.6 Define Quel with its capabilities.

Ans.: Quel :

We will not cover this section, aside from making a few remarks about this

language.

Quel was the original query language for the Ingres dbms. Ingres is

now available with SQL.

Quel closely resembles the tuple relational calculus.

Queries use the range of, retrieve and where clauses.

A typical query : range of t is

borrow range of s is deposit

retrieve unique (s.cname)

where t.bname=``SFU''

and s.bname=``SFU'' and

t.cname=s.cname

This finds the names of all customers who have both a loan and an

account at the SFU branch.

There is no representation for or in Quel.

Quel has the power of the relational algebra by means of the any

aggregate function and the use of insertion and deletion into

temporary relations.

Q.7 How can you convert any query easily into any other language?

Ans.: Converting Queries Easily into Any Language :

Decide on the relations required to answer the query.

For free study notes log on: www.gurukpo.com

You'll need relations containing attributes explicitly mentioned,

plus relations needed to ̀ `traverse'' between needed relations.

In some cases you will need more than one copy of a relation.

Don't include unneeded relations.

Draw them on a piece of paper.

It helps to draw them in a sensible order.

Draw them in the order you would ``traverse'' them. This will

simplify the drawing of links.

Draw in links and constant values.

Put links between attributes in different relations wherever the

attributes are required to satisfy some comparison operator

(equals, less than, etc.).

Ordinary lines are used for equals, and write any other

comparison operator on the line at some convenient spot.

Write in constant values, where some attribute must have a

specific value.

For simpler queries, the following advice works. Where you need set

operations or division, a little more thought is needed.

Relational Algebra : we'll do a correct but not necessarily optimal

query.

Do an appropriate combination of Cartesian products and

natural joins of the relations required.

Do a select where the predicate demands that all the links and

constants in your diagram be true.

Don't forget that natural joins will take care of some of your

diagram's links.

Finally, do a project of the attributes to be printed out.

Tuple Relational Calculus :

Create a tuple variable for each of the relations in your diagram.

Make sure the parentheses give you the required scope.

For free study notes log on: www.gurukpo.com

Database Management System

Ensure each link and constant in your diagram corresponds to

some part of your predicate.

Make sure t gets the attributes that should be printed out.

Domain Relational Calculus :

Create domain variables. Name them sensibly.

Remember that equality is forced by using the same domain

variable in several places.

Other comparison operators may be explicitly stated, e.g.

Remember to use the existential qualifier for domain variables,

and to make sure your scoping is correct.

SQL : Similar to relational algebra.

Put all the relations needed in the from clause.

Remember to use tuple variables when you have more than one

copy of a relation, or for general convenience.

Express each of the links and constants in your diagram as part

of the predicate in the where clause.

State the attributes to be printed out in the select clause.

QBE : Your diagram is almost QBE to start with.

Select the skeleton tables needed.

Remember that you only need one skeleton table per relation.

You can put more than one line in a skeleton table.

Force equality on links by using the same domain variables in

different places (see the connection to domain relational

calculus?).

Use the condition box where necessary.

Use P. to print out the attributes. Remember to use a result

relation if attributes are printed out from more than one

skeleton table.

□ □

For free study notes log on: www.gurukpo.com

Chapter-9

Advanced Features of SQL

Q.1 What is Embedded SQL? Explain in detail.

Ans.: Embedded SQL is a method of combining the computing power of a

programming language and the database manipulation capabilities of SQL. It

allows programmers to embed SQL statements in programs written in

C/C++, Fortran, COBOL, Pascal, etc.

Embedded SQL statements are SQL statements written within application

programming languages and preprocessed by a SQL preprocessor before the

application program is compiled. There are two types of embedded SQL:

static and dynamic.

The SQL standard defines embedding of SQL as embedded SQL and the

language in which SQL queries are embedded is referred to as the host

language. A popular host language is C. The mixed C and embedded SQL is

called Pro*C in Oracle and Sybase database management systems. Other

embedded SQL precompilers are Pro*COBOL, Pro*FORTRAN, Pro*PL/I,

Pro*Pascal, and SQL*Module (for Ada).

Embedded SQL is a superset of Sybase's T-SQL or Oracle's PL/SQL that lets

you place SQL statements in application programs written in languages such

as C and COBOL. Pro*C allows the C programmer to write database access

code fast and with less of a learning curve. For people who are familiar with

both C and SQL, this is a cakewalk. Its worth noting that there are differences

between implementations of Pro*C across different database vendors due to

the differences between database architectures, datatypes, etc. Each new

release of a database may announce certain enhancements or changes to its

Embedded SQL pre-compiler. It is best to track changes on this front by

referring to the vendor database websites.

A Pro*C program is compiled in two steps. First, the Pro*C precompiler

recognizes the SQL statements embedded in the program, and replaces them

with appropriate calls to the functions in the SQL runtime library. The output

For free study notes log on: www.gurukpo.com

Database Management System

is pure C/C++ code with all the pure C/C++ portions intact. Then, a regular

C/C++ compiler is used to compile the code and produces the executable.

Pro*C Syntax

SQL

All SQL statements need to start with EXEC SQL and end with a semicolon

";". You can place the SQL statements anywhere within a C/C++ block, with

the restriction that the declarative statements do not come after the executable

statements. As an example :

{

int a;

/* ... */

EXEC SQL SELECT salary INTO :a

FROM Employee

WHERE SSN=876543210;

/* ... */

printf("The salary is %d\n", a);

/* ... */

}

Q.2 What is Dynamic SQL? Explain it with suitable example.

Ans.: Dynamic SQL is an enhanced form of Structured Query Language (SQL) that,

unlike standard (or static) SQL, facilitates the automatic generation and

execution of program statements. This can be helpful when it is necessary to

write code that can adjust to varying databases, conditions, or servers. It also

makes it easier to automate tasks that are repeated many times.

Dynamic SQL statements are stored as strings of characters that are entered

when the program runs. They can be entered by the programmer or

generated by the program itself, but unlike static SQL statements, they are not

embedded in the source program. Also in contrast to static SQL statements,

dynamic SQL statements can change from one execution to the next.

Dynamic SQL statements can be written by people with comparatively little

programming experience, because the program does most of the actual

For free study notes log on: www.gurukpo.com

CLOSE

DECLARE

DESCRIBE

EXECUTE

FETCH

INCLUDE

OPEN

PREPARE

Example :

If we need to find all records from the customers table where City = 'London'.

This can be done easily such as the following example shows in SQL.

DECLARE @city varchar(75)

SET @city = 'London'

SELECT * FROM customers WHERE City = @city

In Dynamic SQL we can write it as

generation of the code. A potential problem is reduced performance

(increased processing time) if there is too much dynamic SQL running at any

given time.

Q.3 What are the basic requirements for Dynamic SQL Statements?

Ans.: To represent a dynamic SQL statement, a character string must contain the

text of a valid SQL statement, but not contain the EXEC SQL clause, or the

statement terminator, or any of the following embedded SQL commands :

DECLARE @sqlCommand varchar(1000)

DECLARE @columnList varchar(75)

DECLARE @city varchar(75)

SET @columnList = 'CustomerID, ContactName, City'

SET @city = '''London'''

For free study notes log on: www.gurukpo.com

Database Management System

SET @sqlCommand = 'SELECT ' + @columnList + ' FROM customers

WHERE City = ' + @city

EXEC (@sqlCommand)

Q.4 When to use Dynamic SQL?

Ans.: In practice, static SQL will meet nearly all your programming needs. Use

dynamic SQL only if you need its open-ended flexibility. Its use is suggested

when one of the following items is unknown at pre-compile time :

Text of the SQL statement (commands, clauses, and so on)

The number of host variables

The data types of host variables

References to database objects such as columns, indexes, sequences,

tables, usernames, and views

Q.5 What is Cursor? Define the working of SQL with Cursors.

Ans.: In database packages, the term cursor refers to a control structure for the

successive traversal (and potential processing) of records in a result set.

A cursor is used for processing individual rows returned by the database

system for a query. It is necessary because many programming languages

suffer from impedance mismatch. Programming languages are often

procedural and do not offer any mechanism for manipulating whole result

sets at once. Therefore, the rows in a result set must be processed sequentially

by the application. In this way, a cursor can be thought of as an iterator over

the collection of rows in the result set.

Working with Cursors :

A cursor is made known to the DBMS with the DECLARE CURSOR

statement. A name has to be assigned for the cursor.

DECLARE cursor_name CURSOR FOR SELECT ... FROM ...

Before being used, a cursor must be opened with the OPEN statement. As a

result of the opening, the cursor is positioned before the first row in the result

set.

For free study notes log on: www.gurukpo.com

OPEN cursor_name

A cursor is positioned on a specific row in the result set with the FETCH

statement. A fetch operation transfers the data of the row into the application.

Once all rows are processed or the fetch operation is to be positioned on a

non-existing row (cf. scrollable cursors below), a SQLSTATE '02000' (usually

accompanied by an SQLCODE +100) is returned by the DBMS to indicate the

end of the result set.

FETCH cursor_name INTO ...

The last step is to close the cursor using the CLOSE statement.

CLOSE cursor_name

Once a cursor is closed it can be opened again, which implies that the query is

evaluated again and a new result set is built.

□ □ □

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-10

Query Optimization Techniques

Q.1 What do you mean by Query Optimization? What are the Query Evaluation

Plans in RDBMS? How will you define Relational Query Optimization?

Ans.: Query optimization is a function of many relational database management

systems in which multiple query plans for satisfying a query are examined

and a good query plan is identified. This may or not be the absolute best

strategy because there are many ways of doing plans. There is a trade off

between the amount of time spent figuring out the best plan and the amount

running the plan. Different qualities of database management systems have

different ways of balancing these two. Cost based query optimizers evaluate

the resource footprint of various query plans and use this as the basis for plan

selection. Typically the resources which are costed as CPU path length,

amount of disk buffer space, disk storage service time, and interconnect usage

between units of parallelism. The set of query plans examined is formed by

examining possible access paths (e.g., primary index access, secondary index

access, full file scan) and various relational table join techniques (e.g, merge

join, hash join, product join). The search space can become quite large

depending on the complexity of the SQL query. There are two types of

optimization. These consist of logical optimization which generates a

sequence of relational algebra to solve the query. In addition there is physical

optimization which is used to determine the means of carrying out each

operation.

Translating SQL Queries into Relational Algebra : Different optimizer

sequences such as the different Greek alphabet characters which are assigned

to them. This is explained in the article relational algebra.

The Goal of Query Optimization : The goal is to eliminate as many

unneeded tuples, or rows as possible. The following is a look at relational

algebra as it eliminates unneeded tuples. The project operator is

straightforward to implement if <attribute list> contains a key to relation R. If

For free study notes log on: www.gurukpo.com

it does not include a key of R, it must be eliminated. This must be done by

sorting (see sort methods below) and eliminating duplicates. This method can

also use hashing to eliminate duplicates Hash table.

Relational Query Optimizer : The query optimizer is the heart of RDBMS

performance and must also be extended with knowledge about how to

execute User Defined Functions efficiently, take advantage of new index

structures, transform queries in new ways, and navigate among data using

references. Successfully opening up such a critical and highly tuned DBMS

component and educating third parties about optimization techniques is a

major challenge for DBMS vendors.

Q.2 Define Iterator Interface in terms of Relational Operators.

Ans.: Relational Operators and the Iterator Interface : One of the most powerful

features of relational databases is their support for declarative query

languages such as SQL. With these languages, users describe the output of

their queries without needing to specify how that query is supposed to be

executed by the DBMS. It is the responsibility of the Query Optimizer to built

a query evaluation plan, a tree of relational operators, so that the user's query

can be answered with the least incurred cost. Resulttuples flow from the

nodes at the lower levels of the tree to their parent nodes, where they get

further processed and outputted to their parents respectively, until they reach

the top-most node, the root of the operator tree, at which point they are

returned to the user.

To simplify the interaction between the different operators in a query plan

tree, every operator is required to implement a uniform iterator interface, so

that parent nodes in a query plan do not need to explicitly know the type of

the operator(s) they accept as input, and thus what entry point functions they

need to call to interact with them. The abstract iterator class which all

operators of Minibase extend is relop.Iterator. The functions that it provides

are the following:

Constructor(Iterator[] inputs, params): Sets up its member attributes (e.g. its

iterator inputs { one if it is a unary operator such as selection or projection,

two if it is a binary operator like join) and initializes (\opens") the iterator.

isOpen(): Checks whether the iterator is open.

For free study notes log on: www.gurukpo.com

Database Management System

close(): Closes the iterator, and releases any temporary resources (such as
temporary ¯les) held within its lifetime.

restart(): Restarts the iterator, i.e. as if it were just constructed.

explain(): A recursive function that gives a one- line explanation of the

iterator, and recurses on its inputs

(its children-iterators).

hasNext(): Returns true if the iterator has not visited all the tuples that are to

be returned by the operator implementing the interface.

Q.3 How can you explain Pipelined Evaluation in terms of Database

Management System.

Ans.: Pipelined Evaluation : As we know, operators in a query plan can be

pipelined; as soon as a tuple is generated by an operator which acts as input

to another one .In a pipelined plan , Each tuple stream from one operator to

another Pipelining allows for parallel execution of operators, avoids

unnecessary materialization may be necessary.

(e.g. a selection which might be a left input of a Nested Loops Join (NLJ)),

the higher level operator can immediately include this tuple to its

computation. In our example, the NLJ operator can tell whether it has

received all the available tuples of its left input by a call to the selection's has

Next() method, prior to its next attempt to retrieve the next available tuple. If

the selection operator generates for some reason tuples slower than NLJ can

consume them, the semantics of hasNext() require the method to block, until

a de¯nite answer can be returned (that is whether the selection has exhausted

all its input (false), or is still in the process of generating tuples (true)).

It is a good practice to \pre-compute the next available tuple, so that it can be

immediately returned by a call to:

getNext(): Retrieves the next available tuple.

□ □ □

For free study notes log on: www.gurukpo.com

Chapter-11

Database Management Issues

Q.1 How will you explain Backup & Recovery for the Database Management

System?

Ans.: Backup/Recovery involves the process of making a copy of a database in case
of an equipment failure or disaster, then recovering or retrieving the copied
database if needed.

One of the innumerable tasks of the DBA is to ensure that all of the databases

of the enterprise are always "available." Availability in this context means that

the users must be able to access the data stored in the databases, and that the

contents of the databases must be up-to-date, consistent, and correct. It must

never appear to a user that the system has lost the data or that the data has

become inconsistent. This would totally ruin the user's confidence in the

database and the entire system.

Many factors threaten the availability of the databases. These include natural

disasters (such as floods and earthquakes), hardware failures (for example, a

power failure or disk crash), software failures (such as DBMS malfunctions --

read "bugs" -- and application program errors), and people failures (for

example, operator errors, user misunderstandings, and keyboard trouble). To

this list we can also add the threats such as malicious attempts to destroy or

corrupt the contents of the database.

In a large enterprise, the DBA must ensure the availability of several

databases, such as the development databases, the databases used for unit

and acceptance testing, the operational online production databases (some of

which may be replicated or distributed all over the world), the data

warehouse databases, the data marts, and all of the other departmental

databases. All of these databases usually have different requirements for

availability. The online production databases typically must be available, up-

to-date, and consistent for 24 hours a day, seven days a week, with minimal

For free study notes log on: www.gurukpo.com

Database Management System

downtime. The warehouse databases must be available and up-to-date

during business hours and even for a while after hours.

On the other hand, the test databases need to be available only for testing

cycles, but during these periods the testing staff may have extensive

requirements for the availability of their test databases. For example, the DBA

may have to restore the test databases to a consistent state after each test. The

developers often have even more ad hoc requirements for the availability of

the development databases, specifically toward the end of a crucial deadline.

The business hours of a multinational organization may also have an impact

on availability. For example, a working day from 8 a.m. in central Europe to 6

p.m. in California implies that the database must be available for 20 hours a

day. The DBA is left with little time to provide for availability, let alone

perform other maintenance tasks.

Q.2 Define the basic steps of Recovery Process.

Ans.: Recovery is the corrective process to restore the database to a usable state
from an erroneous state. The basic recovery process consists of the following
steps -

Identify that the Database is in an Erroneous, Damaged, or Crashed

State :

Suspend normal processing.

Determine the source and extent of the damage.

Take corrective action, that is :

Restore the system resources to a usable state.

Rectify the damage done, or remove invalid data.

Restart or continue the interrupted processes, including the re-
execution of interrupted transactions.

Resume Normal Processing :

To cope with failures, additional components and algorithms are
usually added to the system. Most techniques use recovery data (that
is, redundant data), which makes recovery possible. When taking
corrective action, the effects of some transactions must be removed,
while other transactions must be re-executed; some transactions must
even be undone and redone. The recovery data must make it possible
to perform these steps.

For free study notes log on: www.gurukpo.com

Q.3 Describe the different techniques which can be used for Recovery from an

Erroneous State.

Ans.: The following techniques can be used for recovery from an erroneous state :

Dump and Restart : The entire database must be backed up regularly to
archival storage. In the event of a failure, a copy of the database in a previous
correct state (such as from a checkpoint) is loaded back into the database. The
system is then restarted so that new transactions can proceed. Old
transactions can be re-executed if they are available. The following types of
restart can be identified :

A warm restart is the process of starting the system after a controlled
system shutdown, in which all active transactions were terminated
normally and successfully.

An emergency restart is invoked by a restart command issued by the
operator. It may include reloading the database contents from archive
storage.

A cold start is when the system is started from scratch, usually when a
warm restart is not possible. This may also include reloading the
database contents from archive storage. Usually used to recover from
physical damage, a cold restart is also used when recovery data was
lost.

Undo-Redo Processing (also called Roll-Back and Re-Execute) : By using an

audit trail of transactions, all of the effects of recent, partially completed

transactions can be undone up to a known correct state. Undoing is achieved

by reversing the updating process. By working backwards through the log, all

of the records of the transaction in question can be traced, until the begin

transaction operations of all of the relevant transactions have been reached.

The undo operation must be "idempotent," meaning that failures during undo

operations must still result in the correct single intended undo operation

taking place. From the known correct state, all of the journaled transactions

can then be re-executed to obtain the desired correct resultant database

contents. The operations of the transactions that were already executed at a

previous stage are obtained from the audit trail. The redo operation must also

be idempotent, meaning that failures during redo operations must still result

in the correct single intended redo operation taking place. This technique can

be used when partially completed processes are aborted.

For free study notes log on: www.gurukpo.com

Database Management System

Roll-Forward Processing (also called Reload and Re-Execute) : All or part of

a previous correct state (for example, from a checkpoint) is reloaded; the DBA

can then instruct the DBMS to re-execute the recently recorded transactions

from the transaction audit trail to obtain a correct state. It is typically used

when (part of) the physical media has been damaged.

Restore and Repeat : This is a variation of the previous method, where a
previous correct state is restored. The difference is that the transactions are
merely reposted from before and/or after images kept in the audit trail. The
actual transactions are not re-executed: They are merely reapplied from the
audit trail to the actual data table. In other words, the images of the updated
rows (the effects of the transactions) are replaced in the data table from the
audit trail, but the original transactions are not re-executed as in the previous
case.

Q.4 Describe the Maintenance & Performance of DBMS in terms of DBA.

Ans.: The DBA has an extensive set of requirements for the tools and facilities

offered by the DBMS. These include facilities to back up an entire database

offline, facilities to back up parts of the database selectively, features to take a

snapshot of the database at a particular moment, and obviously journaling

facilities to roll back or roll forward the transactions applied to the database

to a particular identified time. Some of these facilities must be used online --

that is, while the users are busy accessing the database. For each backup

mechanism, there must be a corresponding restore mechanism -- these

mechanisms should be efficient, because we usually have to restore a lost,

corrupt, or damaged database at some critical moment, while the users are

waiting anxiously (sometimes highly irritated) and the managers are jumping

up and down (often ineffectually)! The backup and restore facilities should be

configurable -- we may want to stream the backup data to and from multiple

devices in parallel, we may want to add compression and decompression

(including using third-party compression tools), we may want to delete old

backups automatically off the disk, or we may want to label the tapes

according to our own standards. We should also be able to take the backup of

a database from one platform and restore it on another -- this step is

necessary to cater for non-database-related problems, such as machine and

operating system failures. For each facility, we should be able to monitor its

progress and receive an acknowledgment that each task has been completed

successfully.

For free study notes log on: www.gurukpo.com

Some organizations use so-called "hot standby" techniques to increase the

availability of their databases. In a typical hot standby scenario, the

operations performed on the operational database are replicated to a standby

database. If any problems are encountered on the operational database, the

users are switched over and continue working on the standby database until

the operational database is restored.

Oracle :

Oracle7 Release 7.3 uses full and partial database backups and a redo log for

its database backup and recovery operations. The database backup is an

operating system backup of the physical files that constitute the Oracle

database. The redo log consists of two or more pre-allocated files, which are

used to record all changes made to the database. We can also use the export

and import utilities to create a backup of a database. Oracle offers a standby

database scheme, with which it maintains a copy of a primary database on

duplicate hardware, in a constant recoverable state, by applying the redo logs

archived off the primary database.

A full backup is an operating system backup of all of the data files, parameter

files, and the control file that constitute the database. A full database backup

can be taken by using the operating system's commands or by using the host

command of the Server Manager. A full database backup can be taken online

when the database is open, but only an offline database backup (taken when

the database server is shut down) will necessarily be consistent. An

inconsistent database backup must be recovered with the online and archived

redo log files before the database will become available. The best approach is

to take a full database backup after the database has been shut down with

normal or immediate priority.

A partial backup is any operating system backup of a part of the full backup,

such as selected data files, the control file only, or the data files in a specified

tablespace only. A partial backup is useful if the database is operated in

ARCHIVELOG mode. A database operating in NOARCHIVE mode rarely

has sufficient information to use a partial backup to restore the database to a

consistent state. The archiving mode is usually set during database creation,

but it can be reset at a later stage.

We can recover a database damaged by a media failure in one of three ways

after you have restored backups of the damaged data files. These steps can be

For free study notes log on: www.gurukpo.com

Database Management System

performed using the Server Manager's Apply Recovery Archives dialog box,

using the Server Manager's RECOVER command, or using the SQL ALTER

DATABASE command :

We can recover an entire database using the RECOVER DATABASE
command. This command performs media recovery on all of the data
files that require redo processing.

We can recover specified tablespaces using the RECOVER
TABLESPACE command. This command performs media recovery on
all of the data files in the listed tablespaces. Oracle requires the
database to be open and mounted in order to determine the file names
of the tables contained in the tablespace.

We can list the individual files to be recovered using the RECOVER
DATAFILE command. The database can be open or closed, provided
that Oracle can take the required media recovery locks.

In certain situations, we can also recover a specific damaged data file, even if

a backup file isn't available. This can only be done if all of the required log

files are available and the control file contains the name of the damaged file.

In addition, Oracle provides a variety of recovery options for different crash

scenarios, including incomplete recovery, change-based, cancel-based, and

time-based recovery, and recovery from user errors.

Prevention is Better than Cure :

Although each DBMS we reviewed has a range of backup and recovery
facilities, it is always important to ensure that the facilities are used properly
and adequately. By "adequately," I mean that backups must be taken
regularly. All of the DBMSs we reviewed provided the facilities to repost or
re-execute completed transactions from a log or journal file. However,
reposting or re-executing a few weeks' worth of transactions may take an
unbearably long time. In many situations, users require quick access to their
databases, even in the presence of media failures. Remember that the end
users are not concerned with physical technicalities, such as restoring a
database after a system crash

Even better than quick recovery is no recovery, which can be achieved in two

ways. First, by performing adequate system monitoring and using proper

procedures and good equipment, most system crashes can be avoided. It is

better to provide users with a system that is up and available 90 percent of

the time than to have to do sporadic fixes when problems occur. Second, by

For free study notes log on: www.gurukpo.com

using redundant databases such as hot standby or replicated databases, users

can be relieved of the recovery delays: Users can be switched to the hot

backup database while the master database is being recovered.

A last but extremely important aspect of backup and recovery is testing. Test

your backup and recovery procedures in a test environment before deploying

them in the production environment. In addition, the backup and recovery

procedures and facilities used in the production environment must also be

tested regularly. A recovery scheme that worked perfectly well in a test

environment is useless if it cannot be repeated in the production environment

□ □

particularly in that crucial moment when the root disk fails during the

month-end run!

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-12

Database Design

Q.1 Define Functional Dependencies.

Ans.: Functional Dependency : Attribute B has a functional dependency on

attribute A i.e. A → B if, for each value of attribute A, there is exactly one

value of attribute B. In our example, Employee Address has a functional

dependency on Employee ID, because a particular Employee ID value

corresponds to one and only one Employee Address value. (Note that the

reverse need not be true: several employees could live at the same address

and therefore one Employee Address value could correspond to more than

one Employee ID. Employee ID is therefore not functionally dependent on

Employee Address.) An attribute may be functionally dependent either on a

single attribute or on a combination of attributes. It is not possible to

determine the extent to which a design is normalized without understanding

what functional dependencies apply to the attributes within its tables;

understanding this, in turn, requires knowledge of the problem domain. For

example, an Employer may require certain employees to split their time

between two locations, such as New York City and London, and therefore

want to allow Employees to have more than one Employee Address. In this

case, Employee Address would no longer be functionally dependent on

Employee ID.

Trivial Functional Dependency : A trivial functional dependency is a

functional dependency of an attribute on a superset of itself. {Employee ID,

Employee Address} → {Employee Address} is trivial, as is {Employee

Address} → {Employee Address}.

Full Functional Dependency : An attribute is fully functionally dependent on

a set of attributes X if it is functionally dependent on X, and not functionally

dependent on any proper subset of X. {Employee Address} has a functional

dependency on {Employee ID, Skill}, but not a full functional dependency,

because is also dependent on {Employee ID}.

For free study notes log on: www.gurukpo.com

Transitive Dependency : A transitive dependency is an indirect functional

dependency, one in which X→Z only by virtue of X→Y and Y→Z.

Multivalued Dependency : A multivalued dependency is a constraint

according to which the presence of certain rows in a table implies the

presence of certain other rows: see the Multivalued Dependency article for a

rigorous definition.

Join Dependency : A table T is subject to a join dependency if T can always

be recreated by joining multiple tables each having a subset of the attributes

of T.

Non-PrimeAttribute : A non-prime attribute is an attribute that does not

occur in any candidate key. Employee Address would be a non-prime

attribute in the "Employees' Skills" table.

Q.2 What is Normalization? Explain it with the problems addressed by

Normalization.

Ans.: Database Normalization, sometimes referred to as canonical synthesis, is a

technique for designing relational database tables to minimize duplication of

information and, in so doing, to safeguard the database against certain types

of logical or structural problems, namely data anomalies. For example, when

multiple instances of a given piece of information occur in a table, the

possibility exists that these instances will not be kept consistent when the

data within the table is updated, leading to a loss of data integrity. A table

that is sufficiently normalized is less vulnerable to problems of this kind,

because its structure reflects the basic assumptions for when multiple

instances of the same information should be represented by a single instance

only.

Higher degrees of normalization typically involve more tables and create the

need for a larger number of joins, which can reduce performance.

Accordingly, more highly normalized tables are typically used in database

applications involving many isolated transactions (e.g. an Automated teller

machine), while less normalized tables tend to be used in database

applications that need to map complex relationships between data entities

and data attributes (e.g. a reporting application, or a full-text search

application).

For free study notes log on: www.gurukpo.com

Database Management System

Database theory describes a table's degree of normalization in terms of

normal forms of successively higher degrees of strictness. A table in third

normal form (3NF), for example, is consequently in second normal form

(2NF) as well; but the reverse is not necessarily the case.

Although the normal forms are often defined informally in terms of the

characteristics of tables, rigorous definitions of the normal forms are

concerned with the characteristics of mathematical constructs known as

relations. Whenever information is represented relationally, it is meaningful

to consider the extent to which the representation is normalized.

So, we can say, Normalization is an essential process of database design. A

good understanding of the semantics of data helps the designer to build

efficient design in using the concept of normalization. In other words,

"Normalization is a process in which we can reduce redundancy and in

consistency in our relation."

Q. 3. Write in brief purpose of normalization.

Ans. Purpose of normalization :

Minimize redundancies in data.

Remove insert, delete and update anomalies during database activity.

Reduce the need to reorganize data when it is modified or enhanced.

Q. 4. What are the Problems oranomalies Addressed by Normalization?

Ans.: A table that is not sufficiently normalized can suffer from logical
inconsistencies of various types, and form anomalies involving data
operations. In such a table:

The same information can be expressed on multiple records; therefore
updates to the table may result in logical inconsistencies. For example, each
record in an "Employees' Skills" table might contain an Employee ID,
Employee Address, and Skill; thus a change of address for a particular
employee will potentially need to be applied to multiple records (one for each
of his skills). If the update is not carried through successfully—if, that is, the
employee's address is updated on some records but not others—then the
table is left in an inconsistent state. Specifically, the table provides conflicting

For free study notes log on: www.gurukpo.com

answers to the question of what this particular employee's address is. This
phenomenon is known as an update anomaly.

There are circumstances in which certain facts cannot be recorded at all. For
example, each record in a "Faculty and Their Courses" table might contain a
Faculty ID, Faculty Name, Faculty Hire Date, and Course Code—thus we can
record the details of any faculty member who teaches at least one course, but
we cannot record the details of a newly-hired faculty member who has not
yet been assigned to teach any courses. This phenomenon is known as an
insertion anomaly.

There are circumstances in which the deletion of data representing certain

facts necessitates the deletion of data representing completely different facts.

The "Faculty and Their Courses" table described in the previous example

suffers from this type of anomaly, for if a faculty member temporarily ceases

to be assigned to any courses, we must delete the last of the records on which

that faculty member appears. This phenomenon is known as a deletion

anomaly.

Q.5 Explain 1NF, 2NF, 3NF, BCNF, 4NF and PJNF.

Ans.: Ideally, a relational database table should be designed in such a way as to

exclude the possibility of update, insertion, and deletion anomalies. The

normal forms of relational database theory provide guidelines for deciding

whether a particular design will be vulnerable to such anomalies. It is

possible to correct an unnormalized design so as to make it adhere to the

demands of the normal forms: this is called normalization. Removal of

redundancies of the tables will lead to several tables, with referential integrity

restrictions between them.

Normalization typically involves decomposing an unnormalized table into

two or more tables that, were they to be combined (joined), would convey

exactly the same information as the original table.

For free study notes log on: www.gurukpo.com

Database Management System

History :

Edgar F. Codd first proposed the process of normalization and what came to

be known as the 1st Normal Form.

There is, in fact, a very simple elimination procedure which we shall call

normalization. Through decomposition non-simple domains are replaced by

"domains whose elements are atomic (non-decomposable) values."

—Edgar F. Codd, A Relational Model of Data for Large Shared Data Banks.

In his paper, Edgar F. Codd used the term "non-simple" domains to describe a

heterogeneous data structure, but later researchers would refer to such a

structure as an abstract data type.

Normal Forms :

The Normal Forms (abbrev. NF) of relational database theory provide criteria

for determining a table's degree of vulnerability to logical inconsistencies and

anomalies. The higher the normal form applicable to a table, the less

vulnerable it is to inconsistencies and anomalies. Each table has a "highest

normal form" (HNF): by definition, a table always meets the requirements of

its HNF and of all normal forms lower than its HNF; also by definition, a

table fails to meet the requirements of any normal form higher than its HNF.

The normal forms are applicable to individual tables; to say that an entire

database is in normal form n is to say that all of its tables are in normal form

n.

Newcomers to database design sometimes suppose that normalization

proceeds in an iterative fashion, i.e. a 1NF design is first normalized to 2NF,

then to 3NF, and so on. This is not an accurate description of how

normalization typically works. A sensibly designed table is likely to be in 3NF

on the first attempt; furthermore, if it is 3NF, it is overwhelmingly likely to

have an HNF of 5NF. Achieving the "higher" normal forms (above 3NF) does

not usually require an extra expenditure of effort on the part of the designer,

because 3NF tables usually need no modification to meet the requirements of

these higher normal forms.

Edgar F. Codd originally defined the first three normal forms (1NF, 2NF, and

3NF). These normal forms have been summarized as requiring that all non-

key attributes be dependent on "the key, the whole key and nothing but the

key". The fourth and fifth normal forms (4NF and 5NF) deal specifically with

For free study notes log on: www.gurukpo.com

the representation of many-to-many and one-to-many relationships among

attributes. Sixth normal form (6NF) incorporates considerations relevant to

temporal databases.

First Normal Form :

A table is in First Normal Form (1NF) if and only if it faithfully represents a

relation. Given that database tables embody a relation-like form, the defining

characteristic of one in first normal form is that it does not allow duplicate

rows or nulls. Simply put, a table with a unique key (which, by definition,

prevents duplicate rows) and without any nullable columns is in 1NF.

Note that the restriction on nullable columns as a 1NF requirement, as

espoused by Chris Date, et. al., is controversial. This particular requirement

for 1NF is a direct contradiction to Dr. Codd's vision of the relational

database, in which he stated that "null values" must be supported in a fully

relational DBMS in order to represent "missing information and inapplicable

information in a systematic way, independent of data type." By redefining

1NF to exclude nullable columns in 1NF, no level of normalization can ever

be achieved unless all nullable columns are completely eliminated from the

entire database. This is in line with Date's and Darwen's vision of the perfect

relational database, but can introduce additional complexities in SQL

databases to the point of impracticality.

In 1NF, requirement of a relation is that every table contain exactly one

value for each attribute. This is sometimes expressed as "no repeating

groups". While that statement itself is axiomatic, experts disagree about what

qualifies as a "repeating group", in particular whether a value may be a

relation value; thus the precise definition of 1NF is the subject of some

controversy. Notwithstanding, this theoretical uncertainty applies to

relations, not tables. Table manifestations are intrinsically free of variable

repeating groups because they are structurally constrained to the same

number of columns in all rows. Therefore "a relation is in 1NF if its each

attribute is having atomic value."

Second Normal Form :

The criteria for Second Normal Form (2NF) are :

―The table must be in 1NF.

For free study notes log on: www.gurukpo.com

Database Management System

None of the non-prime attributes of the table are functionally dependent on a

part (proper subset) of a candidate key;‖ in other words, all functional

dependencies of non-prime attributes on candidate keys are full functional

dependencies. For example, consider an "Employees' Skills" table whose

attributes are Employee ID, Employee Address, and Skill; and suppose that

the combination of Employee ID and Skill uniquely identifies records within

the table. Given that Employee Address depends on only one of those

attributes – namely, Employee ID – the table is not in 2NF.

In simple, "a table is in 2NF if it is in 1NF and all non-prime

attributes/columns are fully dependent on Primary Key(s), or a relation is

in 2NF if it is in 1NF and every non-key attribute is fully dependent on

each candidate key of the relation."

Note that if none of a 1NF table's candidate keys are composite – i.e. every

candidate key consists of just one attribute – then we can say immediately

that the table is in 2NF.

Third Normal Form :

The criteria for third normal form (3NF) are :

“The table must be in 2NF.

Every non-prime attribute of the table must be non-transitively dependent

on each candidate key.” A violation of 3NF would mean that at least one non-

prime attribute is only indirectly dependent (transitively dependent) on a

candidate key. For example, consider a "Departments" table whose attributes

are Department ID, Department Name, Manager ID, and Manager Hire Date;

and suppose that each manager can manage one or more departments.

{Department ID} is a candidate key. Although Manager Hire Date is

functionally dependent on the candidate key {Department ID}, this is only

because Manager Hire Date depends on Manager ID, which in turn depends

on Department ID. This transitive dependency means the table is not in 3NF.

Boyce-Codd Normal Form :

A table is in Boyce-Codd Normal Form (BCNF) if and only if, for every one

of its non-trivial functional dependencies X → Y, X is a superkey—that is, X is

either a candidate key or a superset thereof.

For free study notes log on: www.gurukpo.com

EMP Table

Á Â Ã

EMP ENAME JOB MGR HIREDATE SAL COMM DEPTNO

NO

7839 KING PRESIDENT Å 17-NOV-81 5000

10

7698 BLAKE MANAGER 7839 01-MAY-81 2850

30

7782 CLARK MANAGER 7839 09-JUNE-81 2450

10

7566 JONES MANAGER 7839 02-APR-81 2975

20

7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

7844 TURNER SALESMAN 7698 08-SEP-81 1500 Ä 0 30

7900 JAMES CLERK 7698 03-DEC-81 950

30

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7902 FORD ANALYST 7566 03-DEC-81 3000

20

7369 SMITH CLERK 7902 17-DEC-80 800

20

7788 SCOTT ANALYST 7566 09-DEC-82 3000

20

7876 ADAMS CLERK 7788 12-JAN-83 1100

20

7934À MILLER CLERK 7782 23-JAN-82 1300

10

Fourth Normal Form :

A table is in Fourth Normal Form (4NF) if and only if, for every one of its

non-trivial multivalued dependencies X Y, X is a superkey—that is, X is

either a candidate key or a superset thereof.

Fifth Normal Form :

The criteria for Fifth Normal Form (5NF and also PJ/NF) are -

―The table must be in 4NF.

There must be no non-trivial join dependencies that do not follow from the
key constraints. A 4NF table is said to be in the 5NF if and only if every join

dependency in it is implied by the candidate keys.”

Domain/Key Normal Form :

For free study notes log on: www.gurukpo.com

Database Management System

“Domain/Key Normal Form (or DKNF) requires that a table not be subject to
any constraints other than domain constraints and key constraints.‖

Sixth Normal Form :

A table is in Sixth Normal Form (6NF) if and only if it satisfies no non-

trivial join dependencies at all, meaning that the fifth normal form is also
satisfied. The sixth normal form was only defined when extending the
relational model to take into account the temporal dimension. Most SQL
technologies, as of 2005, do not take into account this work, and most
temporal extensions to SQL are not relational. See work by Date, Darwen and
Lorentzos worked for a relational temporal extension, Zimyani for further
discussion on Temporal Aggregation in SQL, or TSQL2 for a non-relational
approach.

Domain Key Normal Form (DKNF)

A relation schema R is said to be in DKNF if all constraints and
dependencies required are enforced simply by enforcing the
domain constraints and key constraints on the relation.

The idea behind domain-key normal form is to specify the 'Ultimate normal
form' that takes into account all possible types of dependencies and
constraints. Before defining DKNF formally let us define few types of
constraints.

Domain Constraint: It specifies that each attribute, Ai of relation R (A1, A2

An), must have a value from a set SAi. Domain Constraint on attribute Ai is
specified as IN (Ai, SAi) we have used domain constraints as a part of
integrity constraints.

Key Constraint: For the relation schema R (A1, A2 An), the Key Constraint,

KEY (K], where K is a subset of R, is the restriction that no two tuples of

relation r defined on 'the relation schema R have the same value for the

attributes in K.

General Constraint: A general constraint is expressed as a simple statement

or predicate and specifies some special requirement that each tuple of a

relation must satisfy to be a valid tuple. For an example or general constraint

consider the relation catalog (pid, sid, cost) shown in figure 6.23 where pid is

the id of product~ sid is the id of supplier and cost is the cost of product

supplied by a supplier suppose we have constraint that if cost of a product is

more than Rs. 5000 supplier will be only A or C otherwise it may be one of

A, B, C, D or E. This constraint can not be expressed as domain constraint or

a key constraint and hence has to be categorized as general constraint.

For free study notes log on: www.gurukpo.com

A relation schema R is said to be in DKNF if all constraints and

dependencies that should hold on a valid relation state can be enforced

simply by enforcing the domain constraints and key constraints on the

relation. However because it is difficult to specify complex constraints in

form of domain or key constraints so its practical utility is limited.

P Si Co

1 D 200

1 B 300

1 C 550

1 E 400

1 A 580
0 0

Figure 6.23 : Instance of Catalog relation

The relation catalog can be convel1ed in DKNF by decomposing it two
relations Low cost catalog and High cost catalog. Low cost catalog relation
will contain products for which cost is less than Rs. 5000 and domain of Sid
will be {A, B, C, D, E}. The other relation high cost catalog will contain
products for which cost is more than Rs. 5000 and domain of Sid will be {A,
C}. Now the general constraint is converted into domain constraints.

Q.6 Define Denomalization in Databases.

Ans.: Denormalization : In some exceptional cases, database designers use the

redundancy to improve performance for specific applications.They select a

schema which is having duplicate values that means it is not normalized. for

ex., suppose that the name of an account holder, has to be displayed along

with the acc. no. and balance, every time the account accessed. In our

normalized schema, this requires join of account with depositor. One

alternative is to join account with depositor, which creates all the attributes of

both the relation.This makes displaying the info. faster. However the balance

is repeated for every person who owns the account, and all copies must be

updated by the application,whenever the account balance is updated. This

process of taking normalized schema and making it non-normalize is called

denormalization.

Databases intended for Online Transaction Processing (OLTP) are typically

more normalized than databases intended for Online Analytical Processing

For free study notes log on: www.gurukpo.com

Database Management System

(OLAP). OLTP Applications are characterized by a high volume of small

transactions such as updating a sales record at a super market checkout

counter. The expectation is that each transaction will leave the database in a

consistent state. By contrast, databases intended for OLAP operations are

primarily "read mostly" databases. OLAP applications tend to extract

historical data that has accumulated over a long period of time. For such

databases, redundant or "denormalized" data may facilitate Business

Intelligence applications. Specifically, dimensional tables in a star schema

often contain denormalized data. The denormalized or redundant data must

be carefully controlled during ETL processing, and users should not be

permitted to see the data until it is in a consistent state. The normalized

alternative to the star schema is the snowflake schema. It has never been

proven that this denormalization itself provides any increase in performance,

or if the concurrent removal of data constraints is what increases the

performance. In many cases, the need for denormalization has waned as

computers and RDBMS software have become more powerful, but since data

volumes have generally increased along with hardware and software

performance, OLAP databases often still use denormalized schemas.

Denormalization is also used to improve performance on smaller computers

as in computerized cash-registers and mobile devices, since these may use the

data for look-up only (e.g. price lookups). Denormalization may also be used

when no RDBMS exists for a platform (such as Palm), or no changes are to be

made to the data and a swift response is crucial.

Non-First Normal Form (NF² or N1NF) :

In recognition that denormalization can be deliberate and useful, the non-first

normal form is a definition of database designs which do not conform to the

first normal form, by allowing "sets and sets of sets to be attribute domains"

(Schek 1982). This extension is a (non-optimal) way of implementing

hierarchies in relations. Some academics have dubbed this practitioner

developed method, "First Ab-normal Form", Codd defined a relational

database as using relations, so any table not in 1NF could not be considered

to be relational.

Consider the following table :

For free study notes log on: www.gurukpo.com

Non-First Normal Form

Person Favorite Colors

Bob blue, red

Jane green, yellow, red

Assume a person has several favorite colors. Obviously, favorite colors
consist of a set of colors modeled by the given table.

To transform this NF² table into a 1NF an "unnest" operator is required which
extends the relational algebra of the higher normal forms. The reverse
operator is called "nest" which is not always the mathematical inverse of
"unnest", although "unnest" is the mathematical inverse to "nest". Another
constraint required is for the operators to be bijective, which is covered by the
Partitioned Normal Form (PNF).

□ □ □

http://en.wikipedia.org/wiki/Bijection
http://en.wikipedia.org/w/index.php?title=Partitioned_Normal_Form&action=edit&redlink=1

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-13

Database Tuning

Q.1 What are views in DBMS?

Ans.: Views :

We have assumed up to now that the relations we are given are the
actual relations stored in the database.

For security and convenience reasons, we may wish to create a
personalized collection of relations for a user.

We use the term view to refer to any relation, not part of the
conceptual model, that is made visible to the user as a ``virtual
relation''.

As relations may be modified by deletions, insertions and updates, it is
generally not possible to store views. (Why?) Views must then be
recomputed for each query referring to them.

View Definition :

A view is defined using the create view command :

create view v as < query expression >

where <query expression> is any legal query expression.

The view created is given the name .

To create a view all-customer of all branches and their

customers: create view all-customer as

∏bname , ename (deposit) U ∏bname , ename (borrow)

Having defined a view, we can now use it to refer to the virtual
relation it creates. View names can appear anywhere a relation name
can.

We can now find all customers of the SFU branch by writing

ename (bname = “SFU”(all – customer))

For free study notes log on: www.gurukpo.com

Updates Through Views and Null Values :

Updates, insertions and deletions using views can cause problems. The
modifications on a view must be transformed to modifications of the
actual relations in the conceptual model of the database.

An example will illustrate: consider a clerk who needs to see all
information in the borrow relation except amount.

Let the view loan-info be given to the clerk:

create view loan-info as

∏bname , loan#, ename (borrow)

Since SQL allows a view name to appear anywhere a relation name
may appear, the clerk can write:

loan-info ← loan-info U {(“SFU”,3,”Ruth”)}

This insertion is represented by an insertion into the actual relation
borrow, from which the view is constructed.

However, we have no value for amount. A suitable response would be

Reject the insertion and inform the user.

Insert (``SFU'',3,``Ruth'',null) into the relation.

The symbol null represents a null or place-holder value. It says the
value is unknown or does not exist.

Another problem with modification through views: consider the

view create view branch-city as

∏bname , ecity (borrow x customer)

This view lists the cities in which the borrowers of each branch live.

Now consider the insertion

branch-city ← branch-city U {(“Brighton”,”Woodside”)}

Using nulls is the only possible way to do this (see Figure 3.22 in the
textbook).

If we do this insertion with nulls, now consider the expression the
view actually corresponds to:

∏bname , ecity (borrow x customer)

As comparisons involving nulls are always false, this query misses the
inserted tuple.

For free study notes log on: www.gurukpo.com

Database Management System

To understand why, think about the tuples that got inserted into
borrow and customer. So we can think about how the view is
recomputed for the above query.

Q.2 What do you mean by Tuning? Also define Tuning Indexes in brief.

Ans.: Database Tuning describes a group of activities used to optimize and

homogenize the performance of a database. It usually overlaps with query

tuning, but refers to configuration of the database files, the database

management system (DBMS), and the operating system and hardware the

DBMS runs on.

The goal is to maximize use of system resources to perform work as

efficiently and rapidly as possible. Most systems are designed to manage

work efficiently, but it is possible to greatly improve performance by

customizing settings and the configuration for the database and the DBMS

being tuned.

Index tuning as part of database tuning is the task of selecting and creating

indexes with the goal of reducing query processing times. However, in

dynamic environments with various ad-hoc queries it is difficult to identify

potentially useful indexes in advance. So that need for new indexing schemes

suitable for self-tuning. Based on problems with previous approaches we

describe the key concepts, which are sparse and partial indexing, usage-

balanced instead of data-balanced structures, and dynamic resource

assignment. We illustrate the approach by a simple index structure, which

provides adaptability as well as improved access characteristics for indexing

in this manner.

Q.3 Explain DBMS Benchmarking.

Ans.: In computing, a Benchmark is the act of running a computer program, a set

of programs, or other operations, in order to assess the relative performance

of an object, normally by running a number of standard tests and trials

against it. The term, benchmark, is also commonly used for specially-

designed benchmarking programs themselves. Benchmarking is usually

associated with assessing performance characteristics of computer hardware,

for example, the floating point operation performance of a CPU, but there are

circumstances when the technique is also applicable to software. Software

For free study notes log on: www.gurukpo.com

benchmarks are, for example, run against compilers or database management

systems.

□ □ □

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database_management_system

For free study notes log on: www.gurukpo.com

Database Management System

Chapter-14

Database Security &

its implementation

Q.1 Explain Security in DBMS and Its Implimentation.

Ans. : Data Security actually is an important function of a database management

system whether it is centralized or distributed. Data security controls protects

the data from unauthorized access and unwanted changes.

Data security controls have two major aspects :

Data Protection

Authorization Control

Data protections make sure that no any unauthorized person can understand

the physical contents of data.

File systems in centralized and distributed operating systems are used to

provide this type of security. Mostly used approach for providing this

protection is data encryption.

Data encryption encodes the data such that nobody can understand the actual

data contents. His encryption not only useful to secure the data stored on

disks but also for exchanging the information over a network.

This encoded data can be decoded (decrypted) only by than authorized users

that know what the code is. Authorization security control ensures that only

privileged user can manipulate the data in the way they are allowed to do.

The database management system must determine that which users are

allowed to perform which functions and which data portion is accessible by

them.

Authorization controls are different in a centralized database to the

distributed database environment. Authorization control definition in a

distributed database system is derived from that in centralized system but in

For free study notes log on: www.gurukpo.com

the context of distributed system some additional complexity is also

considered.

Q.2 Define various Access Controls in terms of Database Security.

Ans.: Access Control is the ability to permit or deny the use of a particular resource

by a particular entity. Access control mechanisms can be used in managing

physical resources (such as a movie theater, to which only ticketholders

should be admitted), logical resources (a bank account, with a limited number

of people authorized to make a withdrawal), or digital resources (for

example, a private text document on a computer, which only certain users

should be able to read).

Access control techniques are sometimes categorized as either discretionary

or non-discretionary. The three most widely recognized models are

Discretionary Access Control (DAC), Mandatory Access Control (MAC), and

Role Based Access Control (RBAC). MAC and RBAC are both non-

discretionary.

Discretionary Access Control :

Discretionary Access Control (DAC) is an access policy determined by the

owner of an object. The owner decides who is allowed to access the object and

what privileges they have.

Two important concepts in DAC are :

File and Data Ownership : Every object in the system has an owner. In

most DAC systems, each object's initial owner is the subject that

caused it to be created. The access policy for an object is determined by

its owner.

Access Rights and Permissions : These are the controls that an owner

can assign to other subjects for specific resources.

Access controls may be discretionary in ACL-based or capability-based access

control systems. (In capability-based systems, there is usually no explicit

concept of 'owner', but the creator of an object has a similar degree of control

over its access policy.)

Mandatory Access Control :

For free study notes log on: www.gurukpo.com

Database Management System

Mandatory Access Control (MAC) is an access policy determined by the

system, not the owner. MAC is used in multilevel systems that process highly

sensitive data, such as classified government and military information. A

multilevel system is a single computer system that handles multiple

classification levels between subjects and objects.

Sensitivity labels : In a MAC-based system, all subjects and objects

must have labels assigned to them. A subject's sensitivity label

specifies its level of trust. An object's sensitivity label specifies the level

of trust required for access. In order to access a given object, the subject

must have a sensitivity level equal to or higher than the requested

object.

Data Import and Export : Controlling the import of information from

other systems and export to other systems (including printers) is a

critical function of MAC-based systems, which must ensure that

sensitivity labels are properly maintained and implemented so that

sensitive information is appropriately protected at all times.

Two methods are commonly used for applying mandatory access control :

Rule-Based Access Controls : This type of control further defines

specific conditions for access to a requested object. All MAC-based

systems implement a simple form of rule-based access control to

determine whether access should be granted or denied by matching:

An object's Sensitivity Label

A subject's Sensitivity Label

Q.3 What do you mean by Encryption?

Ans.: In Cryptography, Encryption is the process of transforming information

(referred to as plaintext) using an algorithm (called cipher) to make it

unreadable to anyone except those possessing special knowledge, usually

referred to as a key. The result of the process is encrypted information (in

cryptography, referred to as ciphertext). In many contexts, the word

encryption also implicitly refers to the reverse process, decryption (e.g.

―software for encryption‖ can typically also perform decryption), to make the

encrypted information readable again (i.e. to make it unencrypted).

Encryption has long been used by militaries and governments to facilitate

secret communication. Encryption is now used in protecting information

within many kinds of civilian systems, such as computers, networks (e.g. the

For free study notes log on: www.gurukpo.com

Internet e-commerce), mobile telephones, wireless microphones, wireless

intercom systems, Bluetooth devices and bank automatic teller machines.

Encryption is also used in digital rights management to prevent unauthorized

use or reproduction of copyrighted material and in software also to protect

against reverse engineering (see also copy protection).

Encryption, by itself, can protect the confidentiality of messages, but other

techniques are still needed to protect the integrity and authenticity of a

message; for example, verification of a message authentication code (MAC) or

a digital signature. Standards and cryptographic software and hardware to

perform encryption are widely available, but successfully using encryption to

ensure security may be a challenging problem. A single slip-up in system

design or execution can allow successful attacks. Sometimes an adversary can

obtain unencrypted information without directly undoing the encryption.

See, e.g., traffic analysis, TEMPEST, or Trojan horse.

